A quantitative theory of gamma synchronization in macaque V1

Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demon...

Full description

Bibliographic Details
Main Authors: Eric Lowet, Mark J Roberts, Alina Peter, Bart Gips, Peter De Weerd
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-08-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/26642
id doaj-50af734cd22a420ab6df3714a21ebdb8
record_format Article
spelling doaj-50af734cd22a420ab6df3714a21ebdb82021-05-05T13:43:38ZengeLife Sciences Publications LtdeLife2050-084X2017-08-01610.7554/eLife.26642A quantitative theory of gamma synchronization in macaque V1Eric Lowet0https://orcid.org/0000-0002-9793-0639Mark J Roberts1Alina Peter2Bart Gips3Peter De Weerd4Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NetherlandsFaculty of Psychology and Neuroscience, Maastricht University, Maastricht, NetherlandsErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, GermanyDonders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, NetherlandsFaculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, NetherlandsGamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.https://elifesciences.org/articles/26642visual cortexgamma rhythmsynchronizationweakly coupled oscillators
collection DOAJ
language English
format Article
sources DOAJ
author Eric Lowet
Mark J Roberts
Alina Peter
Bart Gips
Peter De Weerd
spellingShingle Eric Lowet
Mark J Roberts
Alina Peter
Bart Gips
Peter De Weerd
A quantitative theory of gamma synchronization in macaque V1
eLife
visual cortex
gamma rhythm
synchronization
weakly coupled oscillators
author_facet Eric Lowet
Mark J Roberts
Alina Peter
Bart Gips
Peter De Weerd
author_sort Eric Lowet
title A quantitative theory of gamma synchronization in macaque V1
title_short A quantitative theory of gamma synchronization in macaque V1
title_full A quantitative theory of gamma synchronization in macaque V1
title_fullStr A quantitative theory of gamma synchronization in macaque V1
title_full_unstemmed A quantitative theory of gamma synchronization in macaque V1
title_sort quantitative theory of gamma synchronization in macaque v1
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2017-08-01
description Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.
topic visual cortex
gamma rhythm
synchronization
weakly coupled oscillators
url https://elifesciences.org/articles/26642
work_keys_str_mv AT ericlowet aquantitativetheoryofgammasynchronizationinmacaquev1
AT markjroberts aquantitativetheoryofgammasynchronizationinmacaquev1
AT alinapeter aquantitativetheoryofgammasynchronizationinmacaquev1
AT bartgips aquantitativetheoryofgammasynchronizationinmacaquev1
AT peterdeweerd aquantitativetheoryofgammasynchronizationinmacaquev1
AT ericlowet quantitativetheoryofgammasynchronizationinmacaquev1
AT markjroberts quantitativetheoryofgammasynchronizationinmacaquev1
AT alinapeter quantitativetheoryofgammasynchronizationinmacaquev1
AT bartgips quantitativetheoryofgammasynchronizationinmacaquev1
AT peterdeweerd quantitativetheoryofgammasynchronizationinmacaquev1
_version_ 1721461412697473024