A Fractional Derivative Modeling of Heating and Cooling of LED Luminaires

In the context of energy efficient lighting, we present a mathematical study of the heating and cooling processes of a common type of luminaires, consisting of a single light-emitting diode source in thermal contact with an aluminum passive heat sink. First, we study stationary temperature distribut...

Full description

Bibliographic Details
Main Authors: Eduardo Balvís, Angel Paredes, Iván Area, Ricardo Bendaña, Alicia V. Carpentier, Humberto Michinel, Sonia Zaragoza
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/362
Description
Summary:In the context of energy efficient lighting, we present a mathematical study of the heating and cooling processes of a common type of luminaires, consisting of a single light-emitting diode source in thermal contact with an aluminum passive heat sink. First, we study stationary temperature distributions by addressing the appropriate system of partial differential equations with a commercial finite element solver. Then, we study the temporal evolution of the temperature of the chip and find that it is well approximated with a fractional derivative generalization of Newton’s cooling law. The mathematical results are compared and shown to largely agree with our laboratory measurements.
ISSN:2227-7390