The Hybrid Joints between an FRP Panel and a Steel Panel through Tubular Reinforcements: A Methodology for Interlaminar Stress Calculations

The advantages of laminates in terms of the chemical properties and mechanical properties/weight relationship have motivated several applications of fiber-reinforced plastic (FRP) composites in naval constructions due to the reduction in structural weight. This weight advantage has motivated multipl...

Full description

Bibliographic Details
Main Authors: Franklin Domínguez, Luis Carral
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/11/3962
Description
Summary:The advantages of laminates in terms of the chemical properties and mechanical properties/weight relationship have motivated several applications of fiber-reinforced plastic (FRP) composites in naval constructions due to the reduction in structural weight. This weight advantage has motivated multiple investigations dedicated to dissimilar material joints. We present a methodology for the interlaminar stress calculations of a tubular hybrid joint between an FRP panel and a steel panel through tubular reinforcements. The proposed formulas allow the estimation of the shear and normal stresses on the adhesive, which are generated in the bonding angle of the tubular hybrid joint. The stresses generated at the adhesive bonding ends influence on the adherent’s adjacent layer. A failure criterion is shown to check the accomplishment of the resulting stresses in the adherent laminate. Finally, the proposed formulas are validated using the finite element method and compared with the obtained interlaminar stresses.
ISSN:2076-3417