S-Semiprime Submodules and S-Reduced Modules

This article introduces the concept of S-semiprime submodules which are a generalization of semiprime submodules and S-prime submodules. Let M be a nonzero unital R-module, where R is a commutative ring with a nonzero identity. Suppose that S is a multiplicatively closed subset of R. A submodule P o...

Full description

Bibliographic Details
Main Authors: Ayten Pekin, Ünsal Tekir, Özge Kılıç
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2020/8824787
Description
Summary:This article introduces the concept of S-semiprime submodules which are a generalization of semiprime submodules and S-prime submodules. Let M be a nonzero unital R-module, where R is a commutative ring with a nonzero identity. Suppose that S is a multiplicatively closed subset of R. A submodule P of M is said to be an S-semiprime submodule if there exists a fixed s∈S, and whenever rnm∈P for some r∈R,m∈M, and n∈ℕ, then srm∈P. Also, M is said to be an S-reduced module if there exists (fixed) s∈S, and whenever rnm=0 for some r∈R,m∈M, and n∈ℕ, then srm=0. In addition, to give many examples and characterizations of S-semiprime submodules and S-reduced modules, we characterize a certain class of semiprime submodules and reduced modules in terms of these concepts.
ISSN:2314-4629
2314-4785