DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
The main difficulty in the traditional nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control design lies in how to solve the nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonl...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9424550/ |
id |
doaj-504917b0e4194bcc8084be54bcb806e6 |
---|---|
record_format |
Article |
spelling |
doaj-504917b0e4194bcc8084be54bcb806e62021-05-14T23:00:34ZengIEEEIEEE Access2169-35362021-01-019696356965310.1109/ACCESS.2021.30781229424550DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking DesignBor-Sen Chen0https://orcid.org/0000-0003-1644-6106Min-Yen Lee1https://orcid.org/0000-0002-0391-257XTzu-Han Lin2https://orcid.org/0000-0003-1684-8025Department of Electrical Engineering, National Tsing Hua University, Hsinchu, TaiwanDepartment of Electrical Engineering, National Tsing Hua University, Hsinchu, TaiwanDepartment of Electrical Engineering, National Tsing Hua University, Hsinchu, TaiwanThe main difficulty in the traditional nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control design lies in how to solve the nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonlinear time-varying systems. In this study, a novel HJIE-embedded DNN <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme is proposed to be efficiently trained for nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization and tracking control designs of nonlinear dynamic systems with the external disturbance. The proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control approach not only capitalizes on the availability of theoretical partial differential HJIE but also reduces the amount of empirical data and the complexity to train HJIE-embedded DNN. We have shown that the proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme can approach the theoretical result of <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> robust control when the training error approaches zero and the asymptotic stability is also guaranteed if the nonlinear time-varying system is free of external disturbance. The proposed method could be easily extended to DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reference tracking control of nonlinear systems for more practical applications. Finally, two examples, including <inline-formula> <tex-math notation="LaTeX">$({i})$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization of nonlinear time-varying system and <inline-formula> <tex-math notation="LaTeX">$(ii)$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> unmanned aerial vehicle (UAV) reference tracking control system, are proposed to illustrate the design procedure and to demonstrate the effectiveness of our DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> method.https://ieeexplore.ieee.org/document/9424550/Nonlinear time-varying dynamic systemnonlinear <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ stabilization and tracking controlHamilton Jacobi Issac equation (HJIE)DNN-based <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control designunmanned aerial vehicle (UAV) tracking control |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bor-Sen Chen Min-Yen Lee Tzu-Han Lin |
spellingShingle |
Bor-Sen Chen Min-Yen Lee Tzu-Han Lin DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design IEEE Access Nonlinear time-varying dynamic system nonlinear <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ stabilization and tracking control Hamilton Jacobi Issac equation (HJIE) DNN-based <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control design unmanned aerial vehicle (UAV) tracking control |
author_facet |
Bor-Sen Chen Min-Yen Lee Tzu-Han Lin |
author_sort |
Bor-Sen Chen |
title |
DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design |
title_short |
DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design |
title_full |
DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design |
title_fullStr |
DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design |
title_full_unstemmed |
DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design |
title_sort |
dnn-based h∞ control scheme of nonlinear time-varying dynamic systems with external disturbance and its application to uav tracking design |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2021-01-01 |
description |
The main difficulty in the traditional nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control design lies in how to solve the nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonlinear time-varying systems. In this study, a novel HJIE-embedded DNN <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme is proposed to be efficiently trained for nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization and tracking control designs of nonlinear dynamic systems with the external disturbance. The proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control approach not only capitalizes on the availability of theoretical partial differential HJIE but also reduces the amount of empirical data and the complexity to train HJIE-embedded DNN. We have shown that the proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme can approach the theoretical result of <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> robust control when the training error approaches zero and the asymptotic stability is also guaranteed if the nonlinear time-varying system is free of external disturbance. The proposed method could be easily extended to DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reference tracking control of nonlinear systems for more practical applications. Finally, two examples, including <inline-formula> <tex-math notation="LaTeX">$({i})$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization of nonlinear time-varying system and <inline-formula> <tex-math notation="LaTeX">$(ii)$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> unmanned aerial vehicle (UAV) reference tracking control system, are proposed to illustrate the design procedure and to demonstrate the effectiveness of our DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> method. |
topic |
Nonlinear time-varying dynamic system nonlinear <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ stabilization and tracking control Hamilton Jacobi Issac equation (HJIE) DNN-based <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control design unmanned aerial vehicle (UAV) tracking control |
url |
https://ieeexplore.ieee.org/document/9424550/ |
work_keys_str_mv |
AT borsenchen dnnbasedhx221econtrolschemeofnonlineartimevaryingdynamicsystemswithexternaldisturbanceanditsapplicationtouavtrackingdesign AT minyenlee dnnbasedhx221econtrolschemeofnonlineartimevaryingdynamicsystemswithexternaldisturbanceanditsapplicationtouavtrackingdesign AT tzuhanlin dnnbasedhx221econtrolschemeofnonlineartimevaryingdynamicsystemswithexternaldisturbanceanditsapplicationtouavtrackingdesign |
_version_ |
1721440828668248064 |