DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design

The main difficulty in the traditional nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control design lies in how to solve the nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonl...

Full description

Bibliographic Details
Main Authors: Bor-Sen Chen, Min-Yen Lee, Tzu-Han Lin
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9424550/
id doaj-504917b0e4194bcc8084be54bcb806e6
record_format Article
spelling doaj-504917b0e4194bcc8084be54bcb806e62021-05-14T23:00:34ZengIEEEIEEE Access2169-35362021-01-019696356965310.1109/ACCESS.2021.30781229424550DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking DesignBor-Sen Chen0https://orcid.org/0000-0003-1644-6106Min-Yen Lee1https://orcid.org/0000-0002-0391-257XTzu-Han Lin2https://orcid.org/0000-0003-1684-8025Department of Electrical Engineering, National Tsing Hua University, Hsinchu, TaiwanDepartment of Electrical Engineering, National Tsing Hua University, Hsinchu, TaiwanDepartment of Electrical Engineering, National Tsing Hua University, Hsinchu, TaiwanThe main difficulty in the traditional nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control design lies in how to solve the nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonlinear time-varying systems. In this study, a novel HJIE-embedded DNN <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme is proposed to be efficiently trained for nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization and tracking control designs of nonlinear dynamic systems with the external disturbance. The proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control approach not only capitalizes on the availability of theoretical partial differential HJIE but also reduces the amount of empirical data and the complexity to train HJIE-embedded DNN. We have shown that the proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme can approach the theoretical result of <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> robust control when the training error approaches zero and the asymptotic stability is also guaranteed if the nonlinear time-varying system is free of external disturbance. The proposed method could be easily extended to DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reference tracking control of nonlinear systems for more practical applications. Finally, two examples, including <inline-formula> <tex-math notation="LaTeX">$({i})$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization of nonlinear time-varying system and <inline-formula> <tex-math notation="LaTeX">$(ii)$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> unmanned aerial vehicle (UAV) reference tracking control system, are proposed to illustrate the design procedure and to demonstrate the effectiveness of our DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> method.https://ieeexplore.ieee.org/document/9424550/Nonlinear time-varying dynamic systemnonlinear <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ stabilization and tracking controlHamilton Jacobi Issac equation (HJIE)DNN-based <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control designunmanned aerial vehicle (UAV) tracking control
collection DOAJ
language English
format Article
sources DOAJ
author Bor-Sen Chen
Min-Yen Lee
Tzu-Han Lin
spellingShingle Bor-Sen Chen
Min-Yen Lee
Tzu-Han Lin
DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
IEEE Access
Nonlinear time-varying dynamic system
nonlinear <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ stabilization and tracking control
Hamilton Jacobi Issac equation (HJIE)
DNN-based <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control design
unmanned aerial vehicle (UAV) tracking control
author_facet Bor-Sen Chen
Min-Yen Lee
Tzu-Han Lin
author_sort Bor-Sen Chen
title DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
title_short DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
title_full DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
title_fullStr DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
title_full_unstemmed DNN-Based H&#x221E; Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design
title_sort dnn-based h&#x221e; control scheme of nonlinear time-varying dynamic systems with external disturbance and its application to uav tracking design
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description The main difficulty in the traditional nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control design lies in how to solve the nonlinear partial differential Hamilton-Jacobi-Isaacs equation (HJIE), especially for nonlinear time-varying systems. In this study, a novel HJIE-embedded DNN <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme is proposed to be efficiently trained for nonlinear <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization and tracking control designs of nonlinear dynamic systems with the external disturbance. The proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control approach not only capitalizes on the availability of theoretical partial differential HJIE but also reduces the amount of empirical data and the complexity to train HJIE-embedded DNN. We have shown that the proposed DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> control scheme can approach the theoretical result of <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> robust control when the training error approaches zero and the asymptotic stability is also guaranteed if the nonlinear time-varying system is free of external disturbance. The proposed method could be easily extended to DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reference tracking control of nonlinear systems for more practical applications. Finally, two examples, including <inline-formula> <tex-math notation="LaTeX">$({i})$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> stabilization of nonlinear time-varying system and <inline-formula> <tex-math notation="LaTeX">$(ii)$ </tex-math></inline-formula> an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> unmanned aerial vehicle (UAV) reference tracking control system, are proposed to illustrate the design procedure and to demonstrate the effectiveness of our DNN-based <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> method.
topic Nonlinear time-varying dynamic system
nonlinear <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ stabilization and tracking control
Hamilton Jacobi Issac equation (HJIE)
DNN-based <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control design
unmanned aerial vehicle (UAV) tracking control
url https://ieeexplore.ieee.org/document/9424550/
work_keys_str_mv AT borsenchen dnnbasedhx221econtrolschemeofnonlineartimevaryingdynamicsystemswithexternaldisturbanceanditsapplicationtouavtrackingdesign
AT minyenlee dnnbasedhx221econtrolschemeofnonlineartimevaryingdynamicsystemswithexternaldisturbanceanditsapplicationtouavtrackingdesign
AT tzuhanlin dnnbasedhx221econtrolschemeofnonlineartimevaryingdynamicsystemswithexternaldisturbanceanditsapplicationtouavtrackingdesign
_version_ 1721440828668248064