On rectifiable oscillation of Euler type second order linear differential equations

We study the oscillatory behavior of solutions of the second order linear differential equation of Euler type: $(E)\ y'' + \lambda x^{-\alpha} y = 0, \ x \in (0, 1]$, where $\lambda > 0$ and $\alpha> 2$. Theorem (a) For $2 \le \alpha < 4$, all solution curves of $(E)$ have finite...

Full description

Bibliographic Details
Main Author: James S. W. Wong
Format: Article
Language:English
Published: University of Szeged 2007-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=279
id doaj-5035dc0fa76945d38b79cba2bdb7d5d1
record_format Article
spelling doaj-5035dc0fa76945d38b79cba2bdb7d5d12021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752007-10-0120072011210.14232/ejqtde.2007.1.20279On rectifiable oscillation of Euler type second order linear differential equationsJames S. W. Wong0The University of Hong Kong, City University of Hong Kong and Chinney Investment Ltd., Hong KongWe study the oscillatory behavior of solutions of the second order linear differential equation of Euler type: $(E)\ y'' + \lambda x^{-\alpha} y = 0, \ x \in (0, 1]$, where $\lambda > 0$ and $\alpha> 2$. Theorem (a) For $2 \le \alpha < 4$, all solution curves of $(E)$ have finite arc length; (b) For $\alpha \ge 4$, all solution curves of $(E)$ have infinite arc length. This answers an open problem posed by M. Pasic [8]http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=279
collection DOAJ
language English
format Article
sources DOAJ
author James S. W. Wong
spellingShingle James S. W. Wong
On rectifiable oscillation of Euler type second order linear differential equations
Electronic Journal of Qualitative Theory of Differential Equations
author_facet James S. W. Wong
author_sort James S. W. Wong
title On rectifiable oscillation of Euler type second order linear differential equations
title_short On rectifiable oscillation of Euler type second order linear differential equations
title_full On rectifiable oscillation of Euler type second order linear differential equations
title_fullStr On rectifiable oscillation of Euler type second order linear differential equations
title_full_unstemmed On rectifiable oscillation of Euler type second order linear differential equations
title_sort on rectifiable oscillation of euler type second order linear differential equations
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2007-10-01
description We study the oscillatory behavior of solutions of the second order linear differential equation of Euler type: $(E)\ y'' + \lambda x^{-\alpha} y = 0, \ x \in (0, 1]$, where $\lambda > 0$ and $\alpha> 2$. Theorem (a) For $2 \le \alpha < 4$, all solution curves of $(E)$ have finite arc length; (b) For $\alpha \ge 4$, all solution curves of $(E)$ have infinite arc length. This answers an open problem posed by M. Pasic [8]
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=279
work_keys_str_mv AT jamesswwong onrectifiableoscillationofeulertypesecondorderlineardifferentialequations
_version_ 1721303817578872832