PND: Physics-informed neural-network software for molecular dynamics applications

We have developed PND, a differential equation solver software based on a physics-informed neural network (PINN) for molecular dynamics simulators. Based on automatic differentiation technique provided by PyTorch, our software allows users to flexibly implement equation of motion for atoms, initial...

Full description

Bibliographic Details
Main Authors: Taufeq Mohammed Razakh, Beibei Wang, Shane Jackson, Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura, Priya Vashishta
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711021000972
Description
Summary:We have developed PND, a differential equation solver software based on a physics-informed neural network (PINN) for molecular dynamics simulators. Based on automatic differentiation technique provided by PyTorch, our software allows users to flexibly implement equation of motion for atoms, initial and boundary conditions, and conservation laws as loss function to train the network. PND comes with a parallel molecular dynamic engine in order to examine and optimize loss function design, and different conservation laws and boundary conditions, and hyperparameters, thereby accelerating PINN-based development for molecular applications.
ISSN:2352-7110