Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations

The direct current (DC) motors are widely used; therefore, they are subject to multiple studies, different control techniques or analyses require a dynamic DC motor model. The parameters are needed to complete the model, which can be challenging to obtain. Therefore, multiple parametric estimation t...

Full description

Bibliographic Details
Main Authors: Omar Rodriguez-Abreo, Jose Miguel Hernandez-Paredes, Alejandro Flores Rangel, Carlos Fuentes-Silva, Francisco Antonio Castillo Velasquez
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9427132/
id doaj-5031da5e51ea4a559107e4e9a7749dba
record_format Article
spelling doaj-5031da5e51ea4a559107e4e9a7749dba2021-05-27T23:01:25ZengIEEEIEEE Access2169-35362021-01-019720177202410.1109/ACCESS.2021.30785789427132Parameter Identification of Motors by Cuckoo Search Using Steady-State RelationsOmar Rodriguez-Abreo0https://orcid.org/0000-0002-8650-1185Jose Miguel Hernandez-Paredes1Alejandro Flores Rangel2Carlos Fuentes-Silva3https://orcid.org/0000-0002-9476-4129Francisco Antonio Castillo Velasquez4Industrial Technologies Division, Universidad Politécnica de Querétaro, Querétaro, MexicoRed de investigación OAC optimización, automatización y control, Queretaro, MexicoIndustrial Technologies Division, Universidad Politécnica de Querétaro, Querétaro, MexicoIndustrial Technologies Division, Universidad Politécnica de Querétaro, Querétaro, MexicoRed de investigación OAC optimización, automatización y control, Queretaro, MexicoThe direct current (DC) motors are widely used; therefore, they are subject to multiple studies, different control techniques or analyses require a dynamic DC motor model. The parameters are needed to complete the model, which can be challenging to obtain. Therefore, multiple parametric estimation techniques have been developed. This paper presents a metaheuristic cuckoo search algorithm modified for motors as a parametric estimation tool. A cost function is based on the current and velocity error obtained when an input voltage step is applied to the motor. The main difference with similar works is that we used the steady-state equations to determine the parameters. The algorithm proposed is compared with the Steiglitz–McBride and the original cuckoo search algorithms to evaluate its performance objectively. Simulated and experimental results show that the algorithm proposed can calculate the parameters with better accuracy than the original cuckoo search and Steiglitz–McBride. The modifications made to the original algorithm of the cuckoo search allowed finding the values of the parameters motor with a root mean square error of less than 0.1% for signals obtained with simulation and less than 1% for real signals sampled at 0.001 s.https://ieeexplore.ieee.org/document/9427132/Cuckoo searchmetaheuristicparameter estimationDC motorSteiglitz-McBride algorithm
collection DOAJ
language English
format Article
sources DOAJ
author Omar Rodriguez-Abreo
Jose Miguel Hernandez-Paredes
Alejandro Flores Rangel
Carlos Fuentes-Silva
Francisco Antonio Castillo Velasquez
spellingShingle Omar Rodriguez-Abreo
Jose Miguel Hernandez-Paredes
Alejandro Flores Rangel
Carlos Fuentes-Silva
Francisco Antonio Castillo Velasquez
Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations
IEEE Access
Cuckoo search
metaheuristic
parameter estimation
DC motor
Steiglitz-McBride algorithm
author_facet Omar Rodriguez-Abreo
Jose Miguel Hernandez-Paredes
Alejandro Flores Rangel
Carlos Fuentes-Silva
Francisco Antonio Castillo Velasquez
author_sort Omar Rodriguez-Abreo
title Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations
title_short Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations
title_full Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations
title_fullStr Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations
title_full_unstemmed Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations
title_sort parameter identification of motors by cuckoo search using steady-state relations
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description The direct current (DC) motors are widely used; therefore, they are subject to multiple studies, different control techniques or analyses require a dynamic DC motor model. The parameters are needed to complete the model, which can be challenging to obtain. Therefore, multiple parametric estimation techniques have been developed. This paper presents a metaheuristic cuckoo search algorithm modified for motors as a parametric estimation tool. A cost function is based on the current and velocity error obtained when an input voltage step is applied to the motor. The main difference with similar works is that we used the steady-state equations to determine the parameters. The algorithm proposed is compared with the Steiglitz–McBride and the original cuckoo search algorithms to evaluate its performance objectively. Simulated and experimental results show that the algorithm proposed can calculate the parameters with better accuracy than the original cuckoo search and Steiglitz–McBride. The modifications made to the original algorithm of the cuckoo search allowed finding the values of the parameters motor with a root mean square error of less than 0.1% for signals obtained with simulation and less than 1% for real signals sampled at 0.001 s.
topic Cuckoo search
metaheuristic
parameter estimation
DC motor
Steiglitz-McBride algorithm
url https://ieeexplore.ieee.org/document/9427132/
work_keys_str_mv AT omarrodriguezabreo parameteridentificationofmotorsbycuckoosearchusingsteadystaterelations
AT josemiguelhernandezparedes parameteridentificationofmotorsbycuckoosearchusingsteadystaterelations
AT alejandrofloresrangel parameteridentificationofmotorsbycuckoosearchusingsteadystaterelations
AT carlosfuentessilva parameteridentificationofmotorsbycuckoosearchusingsteadystaterelations
AT franciscoantoniocastillovelasquez parameteridentificationofmotorsbycuckoosearchusingsteadystaterelations
_version_ 1721425198242070528