Stability of Volterra difference delay equations

We study the asymptotic stability of the zero solution of the Volterra difference delay equation \begin{equation} x(n+1)=a(n)x(n)+c(n)\Delta x(n-g(n))+\sum^{n-1}_{s=n-g(n)}k(n,s)h(x(s)).\nonumber \end{equation} A Krasnoselskii fixed point theorem is used in the analysis.

Bibliographic Details
Main Author: Ernest Yankson
Format: Article
Language:English
Published: University of Szeged 2006-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=258
id doaj-5031c8fed8364759a27a1644164f0523
record_format Article
spelling doaj-5031c8fed8364759a27a1644164f05232021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752006-11-0120062011410.14232/ejqtde.2006.1.20258Stability of Volterra difference delay equationsErnest Yankson0University of Cape CoastWe study the asymptotic stability of the zero solution of the Volterra difference delay equation \begin{equation} x(n+1)=a(n)x(n)+c(n)\Delta x(n-g(n))+\sum^{n-1}_{s=n-g(n)}k(n,s)h(x(s)).\nonumber \end{equation} A Krasnoselskii fixed point theorem is used in the analysis.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=258
collection DOAJ
language English
format Article
sources DOAJ
author Ernest Yankson
spellingShingle Ernest Yankson
Stability of Volterra difference delay equations
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Ernest Yankson
author_sort Ernest Yankson
title Stability of Volterra difference delay equations
title_short Stability of Volterra difference delay equations
title_full Stability of Volterra difference delay equations
title_fullStr Stability of Volterra difference delay equations
title_full_unstemmed Stability of Volterra difference delay equations
title_sort stability of volterra difference delay equations
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2006-11-01
description We study the asymptotic stability of the zero solution of the Volterra difference delay equation \begin{equation} x(n+1)=a(n)x(n)+c(n)\Delta x(n-g(n))+\sum^{n-1}_{s=n-g(n)}k(n,s)h(x(s)).\nonumber \end{equation} A Krasnoselskii fixed point theorem is used in the analysis.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=258
work_keys_str_mv AT ernestyankson stabilityofvolterradifferencedelayequations
_version_ 1721303817200336896