Stability of Volterra difference delay equations
We study the asymptotic stability of the zero solution of the Volterra difference delay equation \begin{equation} x(n+1)=a(n)x(n)+c(n)\Delta x(n-g(n))+\sum^{n-1}_{s=n-g(n)}k(n,s)h(x(s)).\nonumber \end{equation} A Krasnoselskii fixed point theorem is used in the analysis.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2006-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=258 |
id |
doaj-5031c8fed8364759a27a1644164f0523 |
---|---|
record_format |
Article |
spelling |
doaj-5031c8fed8364759a27a1644164f05232021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752006-11-0120062011410.14232/ejqtde.2006.1.20258Stability of Volterra difference delay equationsErnest Yankson0University of Cape CoastWe study the asymptotic stability of the zero solution of the Volterra difference delay equation \begin{equation} x(n+1)=a(n)x(n)+c(n)\Delta x(n-g(n))+\sum^{n-1}_{s=n-g(n)}k(n,s)h(x(s)).\nonumber \end{equation} A Krasnoselskii fixed point theorem is used in the analysis.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=258 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ernest Yankson |
spellingShingle |
Ernest Yankson Stability of Volterra difference delay equations Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Ernest Yankson |
author_sort |
Ernest Yankson |
title |
Stability of Volterra difference delay equations |
title_short |
Stability of Volterra difference delay equations |
title_full |
Stability of Volterra difference delay equations |
title_fullStr |
Stability of Volterra difference delay equations |
title_full_unstemmed |
Stability of Volterra difference delay equations |
title_sort |
stability of volterra difference delay equations |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2006-11-01 |
description |
We study the asymptotic stability of the zero solution of the Volterra difference delay equation
\begin{equation}
x(n+1)=a(n)x(n)+c(n)\Delta x(n-g(n))+\sum^{n-1}_{s=n-g(n)}k(n,s)h(x(s)).\nonumber
\end{equation}
A Krasnoselskii fixed point theorem is used in the analysis. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=258 |
work_keys_str_mv |
AT ernestyankson stabilityofvolterradifferencedelayequations |
_version_ |
1721303817200336896 |