Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks

Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor...

Full description

Bibliographic Details
Main Authors: Qingxi Duan, Zhaokun Jing, Xiaolong Zou, Yanghao Wang, Ke Yang, Teng Zhang, Si Wu, Ru Huang, Yuchao Yang
Format: Article
Language:English
Published: Nature Publishing Group 2020-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-17215-3
id doaj-500aa3c61def49a49934f77da350f567
record_format Article
spelling doaj-500aa3c61def49a49934f77da350f5672021-07-11T11:44:59ZengNature Publishing GroupNature Communications2041-17232020-07-0111111310.1038/s41467-020-17215-3Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networksQingxi Duan0Zhaokun Jing1Xiaolong Zou2Yanghao Wang3Ke Yang4Teng Zhang5Si Wu6Ru Huang7Yuchao Yang8Key Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversitySchool of Electronics Engineering and Computer Science, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversitySchool of Electronics Engineering and Computer Science, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityDesigning energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses.https://doi.org/10.1038/s41467-020-17215-3
collection DOAJ
language English
format Article
sources DOAJ
author Qingxi Duan
Zhaokun Jing
Xiaolong Zou
Yanghao Wang
Ke Yang
Teng Zhang
Si Wu
Ru Huang
Yuchao Yang
spellingShingle Qingxi Duan
Zhaokun Jing
Xiaolong Zou
Yanghao Wang
Ke Yang
Teng Zhang
Si Wu
Ru Huang
Yuchao Yang
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
Nature Communications
author_facet Qingxi Duan
Zhaokun Jing
Xiaolong Zou
Yanghao Wang
Ke Yang
Teng Zhang
Si Wu
Ru Huang
Yuchao Yang
author_sort Qingxi Duan
title Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_short Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_full Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_fullStr Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_full_unstemmed Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_sort spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2020-07-01
description Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses.
url https://doi.org/10.1038/s41467-020-17215-3
work_keys_str_mv AT qingxiduan spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT zhaokunjing spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT xiaolongzou spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT yanghaowang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT keyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT tengzhang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT siwu spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT ruhuang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT yuchaoyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
_version_ 1721308671734972416