Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-17215-3 |
id |
doaj-500aa3c61def49a49934f77da350f567 |
---|---|
record_format |
Article |
spelling |
doaj-500aa3c61def49a49934f77da350f5672021-07-11T11:44:59ZengNature Publishing GroupNature Communications2041-17232020-07-0111111310.1038/s41467-020-17215-3Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networksQingxi Duan0Zhaokun Jing1Xiaolong Zou2Yanghao Wang3Ke Yang4Teng Zhang5Si Wu6Ru Huang7Yuchao Yang8Key Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversitySchool of Electronics Engineering and Computer Science, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversitySchool of Electronics Engineering and Computer Science, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityKey Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking UniversityDesigning energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses.https://doi.org/10.1038/s41467-020-17215-3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Qingxi Duan Zhaokun Jing Xiaolong Zou Yanghao Wang Ke Yang Teng Zhang Si Wu Ru Huang Yuchao Yang |
spellingShingle |
Qingxi Duan Zhaokun Jing Xiaolong Zou Yanghao Wang Ke Yang Teng Zhang Si Wu Ru Huang Yuchao Yang Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks Nature Communications |
author_facet |
Qingxi Duan Zhaokun Jing Xiaolong Zou Yanghao Wang Ke Yang Teng Zhang Si Wu Ru Huang Yuchao Yang |
author_sort |
Qingxi Duan |
title |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_short |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_full |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_fullStr |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_full_unstemmed |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_sort |
spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2020-07-01 |
description |
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses. |
url |
https://doi.org/10.1038/s41467-020-17215-3 |
work_keys_str_mv |
AT qingxiduan spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT zhaokunjing spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT xiaolongzou spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT yanghaowang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT keyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT tengzhang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT siwu spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT ruhuang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT yuchaoyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks |
_version_ |
1721308671734972416 |