Tetrahydrobiopterin Improves Endothelial Function in Cardiovascular Disease: A Systematic Review

Background. Tetrahydrobiopterin (BH4) is a cofactor of nitric oxide synthase (NOS). Nitric oxide (NO) bioavailability is reduced during the early stage of vascular diseases, such as coronary artery disease, hypercholesterolemia, hypertension, and diabetic vasculopathy, and even throughout the entire...

Full description

Bibliographic Details
Main Authors: Qiongying Wang, Mina Yang, Han Xu, Jing Yu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Evidence-Based Complementary and Alternative Medicine
Online Access:http://dx.doi.org/10.1155/2014/850312
Description
Summary:Background. Tetrahydrobiopterin (BH4) is a cofactor of nitric oxide synthase (NOS). Nitric oxide (NO) bioavailability is reduced during the early stage of vascular diseases, such as coronary artery disease, hypercholesterolemia, hypertension, and diabetic vasculopathy, and even throughout the entire progression of atherosclerosis. Methods. A literature search was performed using electronic databases (up to January 31, 2014), including MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL), using an established strategy. Results. Fourteen articles were selected with a total of 370 patients. Ten of the fourteen studies showed a significant improvement in the endothelial dysfunction of various cardiovascular disease groups with BH4 supplementation compared with the control groups or placebos. Three studies showed no positive outcome, and one study showed that low-dose BH4 had no effect but that high-dose BH4 did have a significantly different result. Conclusions. This review concludes that supplementation with BH4 and/or augmentation of the endogenous levels of BH4 will be a novel approach to improve the endothelial dysfunction observed in various cardiovascular diseases. BH4 might be considered to be a new therapeutic agent to prevent the initiation and progression of cardiovascular disease.
ISSN:1741-427X
1741-4288