Piecewise-Smooth Support Vector Machine for Classification

Support vector machine (SVM) has been applied very successfully in a variety of classification systems. We attempt to solve the primal programming problems of SVM by converting them into smooth unconstrained minimization problems. In this paper, a new twice continuously differentiable piecewise-smoo...

Full description

Bibliographic Details
Main Authors: Qing Wu, Wenqing Wang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2013/135149
Description
Summary:Support vector machine (SVM) has been applied very successfully in a variety of classification systems. We attempt to solve the primal programming problems of SVM by converting them into smooth unconstrained minimization problems. In this paper, a new twice continuously differentiable piecewise-smooth function is proposed to approximate the plus function, and it issues a piecewise-smooth support vector machine (PWSSVM). The novel method can efficiently handle large-scale and high dimensional problems. The theoretical analysis demonstrates its advantages in efficiency and precision over other smooth functions. PWSSVM is solved using the fast Newton-Armijo algorithm. Experimental results are given to show the training speed and classification performance of our approach.
ISSN:1024-123X
1563-5147