Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system

This paper evaluates the performance of three-dimensionally (3D) printed spiral phase plates (SPPs) for enabling an orbital angular momentum (OAM) multiplexed radio system. The design and realization of the SPPs by means of additive manufacturing exploiting a high-permittivity material is described....

Full description

Bibliographic Details
Main Authors: B. Allen, T. Pelham, Y. Wu, T. Drysdale, D. Isakov, C. Gamlath, C. J. Stevens, G. Hilton, M. A. Beach, P. S. Grant
Format: Article
Language:English
Published: The Royal Society 2019-12-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191419
id doaj-4f9a41c6c0ed4a73a71713cce10a3b37
record_format Article
spelling doaj-4f9a41c6c0ed4a73a71713cce10a3b372020-11-25T04:02:08ZengThe Royal SocietyRoyal Society Open Science2054-57032019-12-0161210.1098/rsos.191419191419Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio systemB. AllenT. PelhamY. WuT. DrysdaleD. IsakovC. GamlathC. J. StevensG. HiltonM. A. BeachP. S. GrantThis paper evaluates the performance of three-dimensionally (3D) printed spiral phase plates (SPPs) for enabling an orbital angular momentum (OAM) multiplexed radio system. The design and realization of the SPPs by means of additive manufacturing exploiting a high-permittivity material is described. Modes 1 and 2 SPPs are then evaluated at 15 GHz in terms of 3D complex radiation pattern, mode purity and beam collimation by means of a 3D printed dielectric lens. The results with the lens yield a crosstalk of −8 dB for between modes 1 and −1, and −11.4 dB for between modes 2 and −2. We suggest a mode multiplexer architecture that is expected to further reduce the crosstalk for each mode. An additional loss of 4.2 dB is incurred with the SPPs inserted into the communication link, which is undesirable for obtaining reliable LTE-based communications. Thus, we suggest: using lower loss materials, seeking ways to reduce material interface reflections or alternative ways of OAM multiplexing to realize a viable OAM multiplexed radio system.https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191419wireless communicationsorbital angular momentum multiplexingspiral phase plates
collection DOAJ
language English
format Article
sources DOAJ
author B. Allen
T. Pelham
Y. Wu
T. Drysdale
D. Isakov
C. Gamlath
C. J. Stevens
G. Hilton
M. A. Beach
P. S. Grant
spellingShingle B. Allen
T. Pelham
Y. Wu
T. Drysdale
D. Isakov
C. Gamlath
C. J. Stevens
G. Hilton
M. A. Beach
P. S. Grant
Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
Royal Society Open Science
wireless communications
orbital angular momentum multiplexing
spiral phase plates
author_facet B. Allen
T. Pelham
Y. Wu
T. Drysdale
D. Isakov
C. Gamlath
C. J. Stevens
G. Hilton
M. A. Beach
P. S. Grant
author_sort B. Allen
title Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
title_short Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
title_full Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
title_fullStr Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
title_full_unstemmed Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
title_sort experimental evaluation of 3d printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
publisher The Royal Society
series Royal Society Open Science
issn 2054-5703
publishDate 2019-12-01
description This paper evaluates the performance of three-dimensionally (3D) printed spiral phase plates (SPPs) for enabling an orbital angular momentum (OAM) multiplexed radio system. The design and realization of the SPPs by means of additive manufacturing exploiting a high-permittivity material is described. Modes 1 and 2 SPPs are then evaluated at 15 GHz in terms of 3D complex radiation pattern, mode purity and beam collimation by means of a 3D printed dielectric lens. The results with the lens yield a crosstalk of −8 dB for between modes 1 and −1, and −11.4 dB for between modes 2 and −2. We suggest a mode multiplexer architecture that is expected to further reduce the crosstalk for each mode. An additional loss of 4.2 dB is incurred with the SPPs inserted into the communication link, which is undesirable for obtaining reliable LTE-based communications. Thus, we suggest: using lower loss materials, seeking ways to reduce material interface reflections or alternative ways of OAM multiplexing to realize a viable OAM multiplexed radio system.
topic wireless communications
orbital angular momentum multiplexing
spiral phase plates
url https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191419
work_keys_str_mv AT ballen experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT tpelham experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT ywu experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT tdrysdale experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT disakov experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT cgamlath experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT cjstevens experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT ghilton experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT mabeach experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
AT psgrant experimentalevaluationof3dprintedspiralphaseplatesforenablinganorbitalangularmomentummultiplexedradiosystem
_version_ 1724444282220183552