Neutral Operator and Neutral Differential Equation
In this paper, we discuss the properties of the neutral operator (Ax)(t)=x(t)−cx(t−δ(t)), and by applying coincidence degree theory and fixed point index theory, we obtain sufficient conditions for the existence, multiplicity, and nonexistence of (positive) periodic solutions to two kinds of second-...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/969276 |
Summary: | In this paper, we discuss the properties of the neutral operator (Ax)(t)=x(t)−cx(t−δ(t)), and by applying coincidence degree theory and fixed point index theory, we obtain sufficient conditions for the existence, multiplicity, and nonexistence of (positive) periodic solutions to two kinds of second-order differential equations with the prescribed neutral operator. |
---|---|
ISSN: | 1085-3375 1687-0409 |