A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens Un modelo estadístico para analizar complejos interdependientes de patógenos vegetales

We introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdisperse...

Full description

Bibliographic Details
Main Authors: EDUARDO DÁVILA, LUIS ALBERTO LÓPEZ, LUIS GUILLERMO DÍAZ
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2012-01-01
Series:Revista Colombiana de Estadística
Subjects:
Online Access:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005
Description
Summary:We introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdispersed data. We illustrate this approach using fungal incidence in vegetables, which we analyzed using Gaussian copula with Beta-binomial margins. Compared to classical and generalized linear models, the model using Gaussian copula function best controls for overdispersion, being less prone to the underestimation of standard errors, the major cause of wrong inference in the statistical analysis of plant pathogen complex.<br>Se introduce un nuevo enfoque para modelar datos binomiales multivariados con sobredispersión, obtenidos de complejos de patógenos vegetales. Después de revisar los conceptos básicos de los modelos lineales generalizados (GLMs) y las funciones Cópula, se muestra cómo estas últimas pueden usarse para modelar observaciones correlacionadas y datos con sobredispersión. Se ilustra el método usando la incidencia de hongos en hortalizas, analizando el caso por medio de la función cópula Gaussiana con marginales Beta-binomiales. Comparado con los modelos lineales clásicos y generalizados, el modelo construido con la cópula Gaussiana es el que mejor controla la sobredispersión, siendo menos propenso a la subestimación de los errores estándar, la causa más importante de inferencia inapropiada en el análisis estadístico de complejos de patógenos vegetales.
ISSN:0120-1751