HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)

PDAM in carrying out operational activities is greatly influenced by the receivables or arrears of customer water bills. Some factors that influence customer patterns in delinquent water bills are customer class and consumption of water usage, which affects the water bill paid by the customer. This...

Full description

Bibliographic Details
Main Authors: Hardi yusa, Made Sudarma, N Pramaita
Format: Article
Language:English
Published: Universitas Udayana 2018-12-01
Series:Majalah Ilmiah Teknologi Elektro
Online Access:https://ojs.unud.ac.id/index.php/JTE/article/view/41551
id doaj-4f83b913d2bd426fbd73a507abd51d28
record_format Article
spelling doaj-4f83b913d2bd426fbd73a507abd51d282020-11-25T03:50:58ZengUniversitas UdayanaMajalah Ilmiah Teknologi Elektro1693-29512503-23722018-12-0117335335810.24843/MITE.2018.v17i03.P0841551HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)Hardi yusaMade SudarmaN PramaitaPDAM in carrying out operational activities is greatly influenced by the receivables or arrears of customer water bills. Some factors that influence customer patterns in delinquent water bills are customer class and consumption of water usage, which affects the water bill paid by the customer. This study will apply the K-Medoids clustering method to find out customers who are delinquent in the PDAM by optimizing the selection of cluster centers using the Ant Colony Optimization (ACO) algorithm. In this study the combination of ACO and K-Medoids methods is called ACOMedoids. The results with the ACOMedoids method can produce a high level of accuracy from the comparison of clustering data with actual bill data. This can be seen from the results of accuracy which is always better than the K-Medoids method, which is the highest achieves 97.65% accuracy for ACOMedoids while K-Medoids is 88.29%. Accuracy results show that the ACO algorithm can produce optimal cluster center points in the clustering process of the K-Medoids method.https://ojs.unud.ac.id/index.php/JTE/article/view/41551
collection DOAJ
language English
format Article
sources DOAJ
author Hardi yusa
Made Sudarma
N Pramaita
spellingShingle Hardi yusa
Made Sudarma
N Pramaita
HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)
Majalah Ilmiah Teknologi Elektro
author_facet Hardi yusa
Made Sudarma
N Pramaita
author_sort Hardi yusa
title HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)
title_short HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)
title_full HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)
title_fullStr HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)
title_full_unstemmed HR Potensi Pelanggan Tunggakan PDAM Menggunakan Metode K-Medoids dengan Optimasi Ant Colony Optimization (ACO)
title_sort hr potensi pelanggan tunggakan pdam menggunakan metode k-medoids dengan optimasi ant colony optimization (aco)
publisher Universitas Udayana
series Majalah Ilmiah Teknologi Elektro
issn 1693-2951
2503-2372
publishDate 2018-12-01
description PDAM in carrying out operational activities is greatly influenced by the receivables or arrears of customer water bills. Some factors that influence customer patterns in delinquent water bills are customer class and consumption of water usage, which affects the water bill paid by the customer. This study will apply the K-Medoids clustering method to find out customers who are delinquent in the PDAM by optimizing the selection of cluster centers using the Ant Colony Optimization (ACO) algorithm. In this study the combination of ACO and K-Medoids methods is called ACOMedoids. The results with the ACOMedoids method can produce a high level of accuracy from the comparison of clustering data with actual bill data. This can be seen from the results of accuracy which is always better than the K-Medoids method, which is the highest achieves 97.65% accuracy for ACOMedoids while K-Medoids is 88.29%. Accuracy results show that the ACO algorithm can produce optimal cluster center points in the clustering process of the K-Medoids method.
url https://ojs.unud.ac.id/index.php/JTE/article/view/41551
work_keys_str_mv AT hardiyusa hrpotensipelanggantunggakanpdammenggunakanmetodekmedoidsdenganoptimasiantcolonyoptimizationaco
AT madesudarma hrpotensipelanggantunggakanpdammenggunakanmetodekmedoidsdenganoptimasiantcolonyoptimizationaco
AT npramaita hrpotensipelanggantunggakanpdammenggunakanmetodekmedoidsdenganoptimasiantcolonyoptimizationaco
_version_ 1724489504910213120