Effects of Calcium-Channel Noise on Dynamics of Excitation-Contraction Coupling in Paced Cardiac Cells

We study a simple discrete model with the impact of calcium-channel noise on the beat-to-beat dynamics of cardiac cells. The effects of the noise are assessed by bifurcation analysis and power spectrum analysis, respectively. It is shown that this model can undergo period-doubling bifurcation and Ho...

Full description

Bibliographic Details
Main Authors: Jiying Ma, Dongmei Xiao
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/687472
Description
Summary:We study a simple discrete model with the impact of calcium-channel noise on the beat-to-beat dynamics of cardiac cells. The effects of the noise are assessed by bifurcation analysis and power spectrum analysis, respectively. It is shown that this model can undergo period-doubling bifurcation and Hopf bifurcation if there are not random perturbations. Under random perturbations, the period-doubling bifurcations of the model can be observed, and the invariant curve from Hopf bifurcation is perturbed to an annulus on the plane and then becomes a totally disordered and randomly scattered region. By the power spectrum analysis, we find that the existence of high-frequency peak in the power spectra links to the period-doubling orbits, while the existence of low-frequency peak corresponds to quasiperiodic orbit.
ISSN:1026-0226
1607-887X