SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH

Spatio-temporal land-use/ land-cover (<i>LULC</i>) change modeling is important to forecast the future <i>LULC</i> distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in <i>LULC</i> trend often exhibits n...

Full description

Bibliographic Details
Main Authors: S. Bhattacharjee, S. K. Ghosh
Format: Article
Language:English
Published: Copernicus Publications 2015-07-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-4-W2/177/2015/isprsannals-II-4-W2-177-2015.pdf
id doaj-4f5d8d788c904fb7a9dbb6db59019769
record_format Article
spelling doaj-4f5d8d788c904fb7a9dbb6db590197692020-11-24T21:47:06ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502015-07-01II-4/W217718410.5194/isprsannals-II-4-W2-177-2015SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACHS. Bhattacharjee0S. K. Ghosh1School of Information Technology, Indian Institute of Technology Kharagpur, West Bengal-721302, IndiaSchool of Information Technology, Indian Institute of Technology Kharagpur, West Bengal-721302, IndiaSpatio-temporal land-use/ land-cover (<i>LULC</i>) change modeling is important to forecast the future <i>LULC</i> distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in <i>LULC</i> trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of <i>LULC</i> distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., <i>NDVI</i>, <i>LST</i>, <i>MSI</i>), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the <i>LULC</i> properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual <i>LULC</i> pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of <i>LULC</i> using <i>semantic kriging</i> (<i>SemK</i>) approach. A new variant of time-series <i>SemK</i> is proposed, namely <i>Rev-SemK</i><sub>ts</sub> to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of <i>LULC</i> pattern.http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-4-W2/177/2015/isprsannals-II-4-W2-177-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author S. Bhattacharjee
S. K. Ghosh
spellingShingle S. Bhattacharjee
S. K. Ghosh
SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet S. Bhattacharjee
S. K. Ghosh
author_sort S. Bhattacharjee
title SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
title_short SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
title_full SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
title_fullStr SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
title_full_unstemmed SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
title_sort spatio-temporal change modeling of lulc: a semantic kriging approach
publisher Copernicus Publications
series ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 2194-9042
2194-9050
publishDate 2015-07-01
description Spatio-temporal land-use/ land-cover (<i>LULC</i>) change modeling is important to forecast the future <i>LULC</i> distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in <i>LULC</i> trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of <i>LULC</i> distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., <i>NDVI</i>, <i>LST</i>, <i>MSI</i>), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the <i>LULC</i> properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual <i>LULC</i> pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of <i>LULC</i> using <i>semantic kriging</i> (<i>SemK</i>) approach. A new variant of time-series <i>SemK</i> is proposed, namely <i>Rev-SemK</i><sub>ts</sub> to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of <i>LULC</i> pattern.
url http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-4-W2/177/2015/isprsannals-II-4-W2-177-2015.pdf
work_keys_str_mv AT sbhattacharjee spatiotemporalchangemodelingoflulcasemantickrigingapproach
AT skghosh spatiotemporalchangemodelingoflulcasemantickrigingapproach
_version_ 1725899385156403200