Conic reformulations for Kullback-Leibler divergence constrained distributionally robust optimization and applications
In this paper, we consider a Kullback-Leibler divergence constrained distributionally robust optimization model. This model considers an ambiguity set that consists of all distributions whose Kullback-Leibler divergence to an empirical distribution is bounded. Utilizing the fact that this divergenc...
Main Author: | Burak Kocuk |
---|---|
Format: | Article |
Language: | English |
Published: |
Balikesir University
2021-04-01
|
Series: | An International Journal of Optimization and Control: Theories & Applications |
Subjects: | |
Online Access: | http://www.ijocta.org/index.php/files/article/view/1001 |
Similar Items
-
Distributionally robust chance constrained planning model for energy storage plants based on Kullback–Leibler divergence
by: Jian Le, et al.
Published: (2021-11-01) -
Uncapacitated facility location problems: contributions
by: Galvão Roberto Diéguez
Published: (2004-01-01) -
Stochastic Programming Approaches to Multi-product Inventory Management Problems with Substitution
by: Zhang, Jie
Published: (2019) -
A Two-Stage Location Problem with Order Solved Using a Lagrangian Algorithm and Stochastic Programming for a Potential Use in COVID-19 Vaccination Based on Sensor-Related Data
by: Xavier Cabezas, et al.
Published: (2021-08-01) -
Multiple Approaches of Solving Allocation Problems on Postal Transportation Network in Conditions of Large Countries
by: Madleňák Radovan, et al.
Published: (2016-09-01)