Importance of the Wheel Vertical Dynamics in the Squeal Noise Mechanism on a Scaled Test Bench

This paper investigates the influence of the wheel vertical dynamics in the mechanism of squeal noise on a scaled test bench. To this purpose, sustained oscillations are first studied on a single degree of freedom oscillator, considering both a decreasing slope of the friction curve and a vertical e...

Full description

Bibliographic Details
Main Author: C. Collette
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.3233/SAV-2011-0620
Description
Summary:This paper investigates the influence of the wheel vertical dynamics in the mechanism of squeal noise on a scaled test bench. To this purpose, sustained oscillations are first studied on a single degree of freedom oscillator, considering both a decreasing slope of the friction curve and a vertical excitation. Their relative importance to sustain the oscillations is discussed. Then, a mathematical model of a quarter scale test bench is developed in the frequency domain. Using this model, it is shown that the squeal noise resulting from the excitation of the bending modes of the wheel is sustained because these bending modes are associated with variations of the vertical contact force. Results are further confirmed by experiments conducted on a scaled test bench.
ISSN:1070-9622
1875-9203