Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization
NFAT is a cytoplasm-localized hyper-phosphorylated transcription factor that is activated through dephosphorylation by calcineurin, a Ca2+/calmodulin-dependent phosphatase. A non-palindromic NFAT-response element (RE) found in the IL2 promoter region has been commonly used for a Ca2+-response report...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-02-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/1422-0067/19/2/605 |
id |
doaj-4f47e69a12264adea329f97808061c30 |
---|---|
record_format |
Article |
spelling |
doaj-4f47e69a12264adea329f97808061c302020-11-25T02:28:46ZengMDPI AGInternational Journal of Molecular Sciences1422-00672018-02-0119260510.3390/ijms19020605ijms19020605Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ MobilizationWei Zhang0Terunao Takahara1Takuya Achiha2Hideki Shibata3Masatoshi Maki4Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, JapanDepartment of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, JapanDepartment of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, JapanDepartment of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, JapanDepartment of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, JapanNFAT is a cytoplasm-localized hyper-phosphorylated transcription factor that is activated through dephosphorylation by calcineurin, a Ca2+/calmodulin-dependent phosphatase. A non-palindromic NFAT-response element (RE) found in the IL2 promoter region has been commonly used for a Ca2+-response reporter gene system, but requirement of concomitant activation of AP-1 (Fos/Jun) often complicates the interpretation of obtained results. A new nanoluciferase (NanoLuc) reporter gene containing nine-tandem repeats of a pseudo-palindromic NFAT-RE located upstream of the IL8 promoter was designed to monitor Ca2+-induced transactivation activity of NFAT in human embryonic kidney (HEK) 293 cells by measuring luciferase activities of NanoLuc and co-expressed firefly luciferase for normalization. Ionomycin treatment enhanced the relative luciferase activity (RLA), which was suppressed by calcineurin inhibitors. HEK293 cells that stably express human STIM1 and Orai1, components of the store-operated calcium entry (SOCE) machinery, gave a much higher RLA by stimulation with thapsigargin, an inhibitor of sarcoplasmic/endoplamic reticulum Ca2+-ATPase (SERCA). HEK293 cells deficient in a penta-EF-hand Ca2+-binding protein ALG-2 showed a higher RLA value than the parental cells by stimulation with an acetylcholine receptor agonist carbachol. The novel reporter gene system is found to be useful for applications to cell signaling research to monitor biological endpoint effects of cellular Ca2+ mobilization.http://www.mdpi.com/1422-0067/19/2/605ALG-2calcium-binding proteincalcineurincalcium signalingcarbacholnanoluciferaseNFATPDCD6reporter gene assaySOCEtranscription factor |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wei Zhang Terunao Takahara Takuya Achiha Hideki Shibata Masatoshi Maki |
spellingShingle |
Wei Zhang Terunao Takahara Takuya Achiha Hideki Shibata Masatoshi Maki Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization International Journal of Molecular Sciences ALG-2 calcium-binding protein calcineurin calcium signaling carbachol nanoluciferase NFAT PDCD6 reporter gene assay SOCE transcription factor |
author_facet |
Wei Zhang Terunao Takahara Takuya Achiha Hideki Shibata Masatoshi Maki |
author_sort |
Wei Zhang |
title |
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization |
title_short |
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization |
title_full |
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization |
title_fullStr |
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization |
title_full_unstemmed |
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization |
title_sort |
nanoluciferase reporter gene system directed by tandemly repeated pseudo-palindromic nfat-response elements facilitates analysis of biological endpoint effects of cellular ca2+ mobilization |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2018-02-01 |
description |
NFAT is a cytoplasm-localized hyper-phosphorylated transcription factor that is activated through dephosphorylation by calcineurin, a Ca2+/calmodulin-dependent phosphatase. A non-palindromic NFAT-response element (RE) found in the IL2 promoter region has been commonly used for a Ca2+-response reporter gene system, but requirement of concomitant activation of AP-1 (Fos/Jun) often complicates the interpretation of obtained results. A new nanoluciferase (NanoLuc) reporter gene containing nine-tandem repeats of a pseudo-palindromic NFAT-RE located upstream of the IL8 promoter was designed to monitor Ca2+-induced transactivation activity of NFAT in human embryonic kidney (HEK) 293 cells by measuring luciferase activities of NanoLuc and co-expressed firefly luciferase for normalization. Ionomycin treatment enhanced the relative luciferase activity (RLA), which was suppressed by calcineurin inhibitors. HEK293 cells that stably express human STIM1 and Orai1, components of the store-operated calcium entry (SOCE) machinery, gave a much higher RLA by stimulation with thapsigargin, an inhibitor of sarcoplasmic/endoplamic reticulum Ca2+-ATPase (SERCA). HEK293 cells deficient in a penta-EF-hand Ca2+-binding protein ALG-2 showed a higher RLA value than the parental cells by stimulation with an acetylcholine receptor agonist carbachol. The novel reporter gene system is found to be useful for applications to cell signaling research to monitor biological endpoint effects of cellular Ca2+ mobilization. |
topic |
ALG-2 calcium-binding protein calcineurin calcium signaling carbachol nanoluciferase NFAT PDCD6 reporter gene assay SOCE transcription factor |
url |
http://www.mdpi.com/1422-0067/19/2/605 |
work_keys_str_mv |
AT weizhang nanoluciferasereportergenesystemdirectedbytandemlyrepeatedpseudopalindromicnfatresponseelementsfacilitatesanalysisofbiologicalendpointeffectsofcellularca2mobilization AT terunaotakahara nanoluciferasereportergenesystemdirectedbytandemlyrepeatedpseudopalindromicnfatresponseelementsfacilitatesanalysisofbiologicalendpointeffectsofcellularca2mobilization AT takuyaachiha nanoluciferasereportergenesystemdirectedbytandemlyrepeatedpseudopalindromicnfatresponseelementsfacilitatesanalysisofbiologicalendpointeffectsofcellularca2mobilization AT hidekishibata nanoluciferasereportergenesystemdirectedbytandemlyrepeatedpseudopalindromicnfatresponseelementsfacilitatesanalysisofbiologicalendpointeffectsofcellularca2mobilization AT masatoshimaki nanoluciferasereportergenesystemdirectedbytandemlyrepeatedpseudopalindromicnfatresponseelementsfacilitatesanalysisofbiologicalendpointeffectsofcellularca2mobilization |
_version_ |
1724836545992589312 |