Ring homomorphisms on H(G)

It is shown that a ring homomorphism on H(G), the algebra of analytic functions on a regular region G in the complex plane, is either linear or conjugate linear provided that the ring homomorphism takes the identity function into a nonconstant function.

Bibliographic Details
Main Author: N. R. Nandakumar
Format: Article
Language:English
Published: Hindawi Limited 1990-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117129000059X
id doaj-4f31a9a5f01a47d48ff9cce5da2e50c8
record_format Article
spelling doaj-4f31a9a5f01a47d48ff9cce5da2e50c82020-11-24T22:36:42ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113239339610.1155/S016117129000059XRing homomorphisms on H(G)N. R. Nandakumar0Department of Mathematical Sciences, University of Delaware, Newark 19716, Delaware, USAIt is shown that a ring homomorphism on H(G), the algebra of analytic functions on a regular region G in the complex plane, is either linear or conjugate linear provided that the ring homomorphism takes the identity function into a nonconstant function.http://dx.doi.org/10.1155/S016117129000059Xring homomorphismalgebra of analytic functionlinearconjugate linear.
collection DOAJ
language English
format Article
sources DOAJ
author N. R. Nandakumar
spellingShingle N. R. Nandakumar
Ring homomorphisms on H(G)
International Journal of Mathematics and Mathematical Sciences
ring homomorphism
algebra of analytic function
linear
conjugate linear.
author_facet N. R. Nandakumar
author_sort N. R. Nandakumar
title Ring homomorphisms on H(G)
title_short Ring homomorphisms on H(G)
title_full Ring homomorphisms on H(G)
title_fullStr Ring homomorphisms on H(G)
title_full_unstemmed Ring homomorphisms on H(G)
title_sort ring homomorphisms on h(g)
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1990-01-01
description It is shown that a ring homomorphism on H(G), the algebra of analytic functions on a regular region G in the complex plane, is either linear or conjugate linear provided that the ring homomorphism takes the identity function into a nonconstant function.
topic ring homomorphism
algebra of analytic function
linear
conjugate linear.
url http://dx.doi.org/10.1155/S016117129000059X
work_keys_str_mv AT nrnandakumar ringhomomorphismsonhg
_version_ 1725718579985252352