Ring homomorphisms on H(G)
It is shown that a ring homomorphism on H(G), the algebra of analytic functions on a regular region G in the complex plane, is either linear or conjugate linear provided that the ring homomorphism takes the identity function into a nonconstant function.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1990-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S016117129000059X |
id |
doaj-4f31a9a5f01a47d48ff9cce5da2e50c8 |
---|---|
record_format |
Article |
spelling |
doaj-4f31a9a5f01a47d48ff9cce5da2e50c82020-11-24T22:36:42ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113239339610.1155/S016117129000059XRing homomorphisms on H(G)N. R. Nandakumar0Department of Mathematical Sciences, University of Delaware, Newark 19716, Delaware, USAIt is shown that a ring homomorphism on H(G), the algebra of analytic functions on a regular region G in the complex plane, is either linear or conjugate linear provided that the ring homomorphism takes the identity function into a nonconstant function.http://dx.doi.org/10.1155/S016117129000059Xring homomorphismalgebra of analytic functionlinearconjugate linear. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
N. R. Nandakumar |
spellingShingle |
N. R. Nandakumar Ring homomorphisms on H(G) International Journal of Mathematics and Mathematical Sciences ring homomorphism algebra of analytic function linear conjugate linear. |
author_facet |
N. R. Nandakumar |
author_sort |
N. R. Nandakumar |
title |
Ring homomorphisms on H(G) |
title_short |
Ring homomorphisms on H(G) |
title_full |
Ring homomorphisms on H(G) |
title_fullStr |
Ring homomorphisms on H(G) |
title_full_unstemmed |
Ring homomorphisms on H(G) |
title_sort |
ring homomorphisms on h(g) |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
1990-01-01 |
description |
It is shown that a ring homomorphism on H(G), the algebra of analytic functions on a regular region G in the complex plane, is either linear or conjugate linear provided that the ring homomorphism takes the identity function into a nonconstant function. |
topic |
ring homomorphism algebra of analytic function linear conjugate linear. |
url |
http://dx.doi.org/10.1155/S016117129000059X |
work_keys_str_mv |
AT nrnandakumar ringhomomorphismsonhg |
_version_ |
1725718579985252352 |