Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev e...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Bologna
2017-12-01
|
Series: | Bruno Pini Mathematical Analysis Seminar |
Subjects: | |
Online Access: | https://mathematicalanalysis.unibo.it/article/view/7797 |
id |
doaj-4f2346221a9d4393947055c688ac1233 |
---|---|
record_format |
Article |
spelling |
doaj-4f2346221a9d4393947055c688ac12332020-11-25T01:40:25ZengUniversity of BolognaBruno Pini Mathematical Analysis Seminar2240-28292017-12-0181557210.6092/issn.2240-2829/77976958Radial Positive Solutions for p-Laplacian Supercritical Neumann ProblemsFrancesca Colasuonno0Benedetta Noris1Università di BolognaUniversité de Picardie Jules VerneThis paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in A. Boscaggin, F. Colasuonno, B. Noris. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2016064 (2017; F. Colasuonno, B. Noris. A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst., 37 (2017) 3025-3057.https://mathematicalanalysis.unibo.it/article/view/7797Quasilinear elliptic equationsShooting methodVariational methodsSobolev-supercritical nonlinearitiesNeumann boundary conditions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francesca Colasuonno Benedetta Noris |
spellingShingle |
Francesca Colasuonno Benedetta Noris Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems Bruno Pini Mathematical Analysis Seminar Quasilinear elliptic equations Shooting method Variational methods Sobolev-supercritical nonlinearities Neumann boundary conditions |
author_facet |
Francesca Colasuonno Benedetta Noris |
author_sort |
Francesca Colasuonno |
title |
Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems |
title_short |
Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems |
title_full |
Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems |
title_fullStr |
Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems |
title_full_unstemmed |
Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems |
title_sort |
radial positive solutions for p-laplacian supercritical neumann problems |
publisher |
University of Bologna |
series |
Bruno Pini Mathematical Analysis Seminar |
issn |
2240-2829 |
publishDate |
2017-12-01 |
description |
This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in A. Boscaggin, F. Colasuonno, B. Noris. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2016064 (2017; F. Colasuonno, B. Noris. A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst., 37 (2017) 3025-3057. |
topic |
Quasilinear elliptic equations Shooting method Variational methods Sobolev-supercritical nonlinearities Neumann boundary conditions |
url |
https://mathematicalanalysis.unibo.it/article/view/7797 |
work_keys_str_mv |
AT francescacolasuonno radialpositivesolutionsforplaplaciansupercriticalneumannproblems AT benedettanoris radialpositivesolutionsforplaplaciansupercriticalneumannproblems |
_version_ |
1725045959492108288 |