Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems

This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev e...

Full description

Bibliographic Details
Main Authors: Francesca Colasuonno, Benedetta Noris
Format: Article
Language:English
Published: University of Bologna 2017-12-01
Series:Bruno Pini Mathematical Analysis Seminar
Subjects:
Online Access:https://mathematicalanalysis.unibo.it/article/view/7797
id doaj-4f2346221a9d4393947055c688ac1233
record_format Article
spelling doaj-4f2346221a9d4393947055c688ac12332020-11-25T01:40:25ZengUniversity of BolognaBruno Pini Mathematical Analysis Seminar2240-28292017-12-0181557210.6092/issn.2240-2829/77976958Radial Positive Solutions for p-Laplacian Supercritical Neumann ProblemsFrancesca Colasuonno0Benedetta Noris1Università di BolognaUniversité de Picardie Jules VerneThis paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in A. Boscaggin, F. Colasuonno, B. Noris. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2016064 (2017; F. Colasuonno, B. Noris. A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst., 37 (2017) 3025-3057.https://mathematicalanalysis.unibo.it/article/view/7797Quasilinear elliptic equationsShooting methodVariational methodsSobolev-supercritical nonlinearitiesNeumann boundary conditions
collection DOAJ
language English
format Article
sources DOAJ
author Francesca Colasuonno
Benedetta Noris
spellingShingle Francesca Colasuonno
Benedetta Noris
Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
Bruno Pini Mathematical Analysis Seminar
Quasilinear elliptic equations
Shooting method
Variational methods
Sobolev-supercritical nonlinearities
Neumann boundary conditions
author_facet Francesca Colasuonno
Benedetta Noris
author_sort Francesca Colasuonno
title Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
title_short Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
title_full Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
title_fullStr Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
title_full_unstemmed Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems
title_sort radial positive solutions for p-laplacian supercritical neumann problems
publisher University of Bologna
series Bruno Pini Mathematical Analysis Seminar
issn 2240-2829
publishDate 2017-12-01
description This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in A. Boscaggin, F. Colasuonno, B. Noris. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2016064 (2017; F. Colasuonno, B. Noris. A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst., 37 (2017) 3025-3057.
topic Quasilinear elliptic equations
Shooting method
Variational methods
Sobolev-supercritical nonlinearities
Neumann boundary conditions
url https://mathematicalanalysis.unibo.it/article/view/7797
work_keys_str_mv AT francescacolasuonno radialpositivesolutionsforplaplaciansupercriticalneumannproblems
AT benedettanoris radialpositivesolutionsforplaplaciansupercriticalneumannproblems
_version_ 1725045959492108288