The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells.
Despite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid b...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6112657?pdf=render |
id |
doaj-4edc58f2b93743859717886eefadf87e |
---|---|
record_format |
Article |
spelling |
doaj-4edc58f2b93743859717886eefadf87e2020-11-25T02:13:29ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01138e020274010.1371/journal.pone.0202740The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells.Miina OjansivuAyush MishraSari VanhatupaMiia JuntunenAntonina LarionovaJonathan MasseraSusanna MiettinenDespite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid by assessing pH change, ion release and conversion to hydroxyapatite. The viability, proliferation, attachment, osteogenesis and endothelial marker expression of human adipose stem cells (hASCs) was evaluated upon direct culture on glass discs and in the extract medium. This is the first study evaluating cell behavior in response to borosilicate glasses based on S53P4 (commercially available as BonAlive®). Replacing silicate with borate in S53P4 increased the glass reactivity. Despite the good viability of hASCs under all conditions, direct culture of cells on borosilicate discs and in undiluted extract medium reduced cell proliferation. This was accompanied with changes in cell morphology. Regarding osteogenic commitment, alkaline phosphatase activity was significantly reduced by the borosilicate glass discs and extracts, whereas the expression of osteogenic markers RUNX2a, OSTERIX, DLX5 and OSTEOPONTIN was upregulated. There was also a borosilicate glass-induced increase in osteocalcin protein production. Moreover, osteogenic supplements containing borosilicate extracts significantly increased the mineral production in comparison to the osteogenic medium control. Interestingly, borosilicate glasses stimulated the expression of endothelial markers vWF and PECAM-1. To conclude, our results reveal that despite reducing hASC proliferation, S53P4-based borosilicate glasses and their dissolution products stimulate osteogenic commitment and upregulate endothelial markers, thus supporting their further evaluation for regenerative medicine.http://europepmc.org/articles/PMC6112657?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miina Ojansivu Ayush Mishra Sari Vanhatupa Miia Juntunen Antonina Larionova Jonathan Massera Susanna Miettinen |
spellingShingle |
Miina Ojansivu Ayush Mishra Sari Vanhatupa Miia Juntunen Antonina Larionova Jonathan Massera Susanna Miettinen The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS ONE |
author_facet |
Miina Ojansivu Ayush Mishra Sari Vanhatupa Miia Juntunen Antonina Larionova Jonathan Massera Susanna Miettinen |
author_sort |
Miina Ojansivu |
title |
The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. |
title_short |
The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. |
title_full |
The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. |
title_fullStr |
The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. |
title_full_unstemmed |
The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. |
title_sort |
effect of s53p4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
Despite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid by assessing pH change, ion release and conversion to hydroxyapatite. The viability, proliferation, attachment, osteogenesis and endothelial marker expression of human adipose stem cells (hASCs) was evaluated upon direct culture on glass discs and in the extract medium. This is the first study evaluating cell behavior in response to borosilicate glasses based on S53P4 (commercially available as BonAlive®). Replacing silicate with borate in S53P4 increased the glass reactivity. Despite the good viability of hASCs under all conditions, direct culture of cells on borosilicate discs and in undiluted extract medium reduced cell proliferation. This was accompanied with changes in cell morphology. Regarding osteogenic commitment, alkaline phosphatase activity was significantly reduced by the borosilicate glass discs and extracts, whereas the expression of osteogenic markers RUNX2a, OSTERIX, DLX5 and OSTEOPONTIN was upregulated. There was also a borosilicate glass-induced increase in osteocalcin protein production. Moreover, osteogenic supplements containing borosilicate extracts significantly increased the mineral production in comparison to the osteogenic medium control. Interestingly, borosilicate glasses stimulated the expression of endothelial markers vWF and PECAM-1. To conclude, our results reveal that despite reducing hASC proliferation, S53P4-based borosilicate glasses and their dissolution products stimulate osteogenic commitment and upregulate endothelial markers, thus supporting their further evaluation for regenerative medicine. |
url |
http://europepmc.org/articles/PMC6112657?pdf=render |
work_keys_str_mv |
AT miinaojansivu theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT ayushmishra theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT sarivanhatupa theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT miiajuntunen theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT antoninalarionova theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT jonathanmassera theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT susannamiettinen theeffectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT miinaojansivu effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT ayushmishra effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT sarivanhatupa effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT miiajuntunen effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT antoninalarionova effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT jonathanmassera effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells AT susannamiettinen effectofs53p4basedborosilicateglassesandglassdissolutionproductsontheosteogeniccommitmentofhumanadiposestemcells |
_version_ |
1724904891006058496 |