Thermal Behavior in Glass Houses through the Analysis of Scale Models

Reducing energy expenditure in the construction sector requires the implementation of passive strategies in buildings. In Spain, consumption is centered on air conditioning systems associated with the demand for the building’s thermal envelope. A critical point of the enclosures is represented by gl...

Full description

Bibliographic Details
Main Authors: Patricia Aguilera-Benito, Sheila Varela-Lujan, Carolina Piña-Ramirez
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/13/14/7970
Description
Summary:Reducing energy expenditure in the construction sector requires the implementation of passive strategies in buildings. In Spain, consumption is centered on air conditioning systems associated with the demand for the building’s thermal envelope. A critical point of the enclosures is represented by glazed holes where much of the energy that is consumed is lost; however, homes increasingly tend to have large window openings due to the comfort and visual well-being they provide to users. In this study, we focus on an extreme case, analyzing a fully glazed house in its four orientations. It is necessary to evaluate the most energy efficient passive strategy for this type of construction. The results are based on the temperature analysis obtained during the monitoring of two scale models of a glass house. The results indicate that solar control foil glasses perform better in warmer weather stations. Regarding the cantilever installation, it influences the interior temperature and the central hours of the day, mitigating the increase in temperature as well as slowing the nighttime cooling.
ISSN:2071-1050