Precipitation Forecast Contribution Assessment in the Coupled Meteo-Hydrological Models

A numerical weather prediction and a rainfall-runoff model employed to evaluate precipitation and flood forecast for the Imjin River (South and North Korea). The real-time precipitation at point and catchment scales evaluated to select proper hydrological model to couple with atmospheric model. As a...

Full description

Bibliographic Details
Main Authors: Aida Jabbari, Jae-Min So, Deg-Hyo Bae
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Atmosphere
Subjects:
wrf
nwp
Online Access:https://www.mdpi.com/2073-4433/11/1/34
Description
Summary:A numerical weather prediction and a rainfall-runoff model employed to evaluate precipitation and flood forecast for the Imjin River (South and North Korea). The real-time precipitation at point and catchment scales evaluated to select proper hydrological model to couple with atmospheric model. As a major limitation of previous studies, temporal and spatial resolutions of hydrological model are smaller than those of meteorological model. Here, through high resolution of temporal (10 min) and spatial (1 km × 1 km), the optimal resolution determined. The results showed Weather Research and Forecasting (WRF) model underestimated precipitation in point and catchment assessment and its skill was relatively higher for catchment than point scale, as illustrated by the lower Root Mean Square Error (RMSE) of 59.67, 160.48, 68.49 for the catchment and 84.49, 212.80 and 91.53 for the point scale in the events 2002, 2007 and 2011, respectively. The findings led to choose the semi-distributed hydrological model. The variations in temporal and spatial resolutions illustrated accuracy decrease; additionally, the optimal spatial resolution obtained at 8 km and temporal resolution did not affect the inherent inaccuracy of the results. Lead-time variation demonstrated that lead-time dependency was almost negligible below 36 h. With reference to this study, comparisons of model performance provided quantitative knowledge for understanding credibility and restrictions of meteo-hydrological models.
ISSN:2073-4433