A Novel PSO-Based Optimized Lightweight Convolution Neural Network for Movements Recognizing from Multichannel Surface Electromyogram

As the medium of human-computer interaction, it is crucial to correctly and quickly interpret the motion information of surface electromyography (sEMG). Deep learning can recognize a variety of sEMG actions by end-to-end training. However, most of the existing deep learning approaches have complex s...

Full description

Bibliographic Details
Main Authors: Xiu Kan, Dan Yang, Le Cao, Huisheng Shu, Yuanyuan Li, Wei Yao, Xiafeng Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/6642463
Description
Summary:As the medium of human-computer interaction, it is crucial to correctly and quickly interpret the motion information of surface electromyography (sEMG). Deep learning can recognize a variety of sEMG actions by end-to-end training. However, most of the existing deep learning approaches have complex structures and numerous parameters, which make the network optimization problem difficult to realize. In this paper, a novel PSO-based optimized lightweight convolution neural network (PLCNN) is designed to improve the accuracy and optimize the model with applications in sEMG signal movement recognition. With the purpose of reducing the structural complexity of the deep neural network, the designed convolution neural network model is mainly composed of three convolution layers and two full connection layers. Meanwhile, the particle swarm optimization (PSO) is used to optimize hyperparameters and improve the autoadaptive ability of the designed sEMG pattern recognition model. To further indicate the potential application, three experiments are designed according to the progressive process of body movements with respect to the Ninapro standard data set. Experiment results demonstrate that the proposed PLCNN recognition method is superior to the four other popular classification methods.
ISSN:1076-2787
1099-0526