Avibactam potentiated the activity of both ceftazidime and aztreonam against S. maltophilia clinical isolates in vitro

Abstract Background Treatment options for Stenotrophomonas maltophilia (S. maltophilia) infections were limited. We assessed the efficacy of ceftazidime (CAZ), ceftazidime-avibactam (CAZ-AVI), aztreonam (ATM), and aztreonam-avibactam (ATM-AVI) against a selection of 76 S. maltophilia out of the 1179...

Full description

Bibliographic Details
Main Authors: Qiuxia Lin, Hua Zou, Xian Chen, Menglu Wu, Deyu Ma, Hanbing Yu, Siqiang Niu, Shifeng Huang
Format: Article
Language:English
Published: BMC 2021-02-01
Series:BMC Microbiology
Subjects:
Online Access:https://doi.org/10.1186/s12866-021-02108-2
Description
Summary:Abstract Background Treatment options for Stenotrophomonas maltophilia (S. maltophilia) infections were limited. We assessed the efficacy of ceftazidime (CAZ), ceftazidime-avibactam (CAZ-AVI), aztreonam (ATM), and aztreonam-avibactam (ATM-AVI) against a selection of 76 S. maltophilia out of the 1179 strains isolated from the First Affiliated Hospital of Chongqing Medical University during 2011–2018. Methods We investigated the antimicrobial resistance profiles of the 1179 S. maltophilia clinical isolates from the first affiliated hospital of Chongqing Medical University during 2011–2018, a collection of 76 isolates were selected for further study of microbiological characterization. Minimum inhibitory concentrations (MICs) of CAZ, CAZ-AVI, ATM and ATM-AVI were determined via the broth microdilution method. We deemed that CAZ-AVI or ATM-AVI was more active in vitro than CAZ or ATM alone when CAZ-AVI or ATM-AVI led to a category change from “Resistant” or “Intermediate” with CAZ or ATM alone to “Susceptible” with CAZ-AVI or ATM-AVI, or if the MIC of CAZ-AVI or ATM-AVI was at least 4-fold lower than the MIC of CAZ or ATM alone. Results For the 76 clinical isolates included in the study, MICs of CAZ, ATM, CAZ-AVI and ATM-AVI ranged from 0.03–64, 1–1024, 0.016–64, and 0.06–64 μg/mL, respectively. In combined therapy, AVI was active at restoring the activity of 48.48% (16/33) and 89.71% (61/68) of S. maltophilia to CAZ and ATM, respectively. Furthermore, CAZ-AVI showed better results in terms of the proportion of susceptible isolates (77.63% vs. 56.58%, P < 0.001), and MIC50 (2 μg/mL vs. 8 μg/mL, P < 0.05) when compared to CAZ. According to our definition, CAZ-AVI was more active in vitro than CAZ alone for 81.58% (62/76) of the isolates. Similarly, ATM-AVI also showed better results in terms of the proportion of susceptible isolates (90.79% vs.10.53%, P < 0.001) and MIC50 (2 μg/mL vs. 64 μg/mL, P < 0.001) when compared to ATM. According to our definition, ATM-AVI was also more active in vitro than ATM alone for 94.74% (72/76) of the isolates. Conclusions AVI potentiated the activity of both CAZ and ATM against S. maltophilia clinical isolates in vitro. We demonstrated that CAZ-AVI and ATM-AVI are both useful therapeutic options to treat infections caused by S. maltophilia.
ISSN:1471-2180