An intelligent clustering method for devising the geochemical fingerprint of underground aquifers
Geochemical fingerprinting is a rapidly expanding discipline in the earth and environmental sciences, anchored in the recognition that geological processes leave behind physical, chemical and sometimes also isotopic patterns in the samples. Furthermore, the geochemical fingerprinting of natural cycl...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-05-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844021011208 |
id |
doaj-4e78e543e3f74f37be9a68f8cb471f5c |
---|---|
record_format |
Article |
spelling |
doaj-4e78e543e3f74f37be9a68f8cb471f5c2021-06-03T14:52:13ZengElsevierHeliyon2405-84402021-05-0175e07017An intelligent clustering method for devising the geochemical fingerprint of underground aquifersA. Di RomaE. Lucena-SánchezG. Sciavicco0C. VaccaroCorresponding author.Geochemical fingerprinting is a rapidly expanding discipline in the earth and environmental sciences, anchored in the recognition that geological processes leave behind physical, chemical and sometimes also isotopic patterns in the samples. Furthermore, the geochemical fingerprinting of natural cycles (water, carbon, soil and biota fingerprinting) are influenced by the anthropogenic impact and by the climate change. So, their monitoring is a tool of resilience and adaptation. In recent years, computational statistics and artificial intelligence methods have started to be used to help the process of geochemical fingerprinting. In this paper we consider data from 57 wells located in the province of Ferrara (Italy), all belonging to the same geological group and separated into 4 different aquifers. The aquifer from which each well extracts its water is known only in 18 of the 57 cases, while in other 39 cases it can be only hypothesized based on geological considerations. We devise a novel technique for geochemical fingerprinting of groundwater by means of which we are able to identify the exact aquifer from which a sample is extracted with a sufficiently high accuracy. Then, we experimentally prove that out method is sensibly more accurate than typical statistical approaches, such as principal component analysis, for this particular problem.http://www.sciencedirect.com/science/article/pii/S2405844021011208Geochemical fingerprintingAquifer fingerprintingIntelligent clusteringFeature selectionEvolutionary algorithms |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Di Roma E. Lucena-Sánchez G. Sciavicco C. Vaccaro |
spellingShingle |
A. Di Roma E. Lucena-Sánchez G. Sciavicco C. Vaccaro An intelligent clustering method for devising the geochemical fingerprint of underground aquifers Heliyon Geochemical fingerprinting Aquifer fingerprinting Intelligent clustering Feature selection Evolutionary algorithms |
author_facet |
A. Di Roma E. Lucena-Sánchez G. Sciavicco C. Vaccaro |
author_sort |
A. Di Roma |
title |
An intelligent clustering method for devising the geochemical fingerprint of underground aquifers |
title_short |
An intelligent clustering method for devising the geochemical fingerprint of underground aquifers |
title_full |
An intelligent clustering method for devising the geochemical fingerprint of underground aquifers |
title_fullStr |
An intelligent clustering method for devising the geochemical fingerprint of underground aquifers |
title_full_unstemmed |
An intelligent clustering method for devising the geochemical fingerprint of underground aquifers |
title_sort |
intelligent clustering method for devising the geochemical fingerprint of underground aquifers |
publisher |
Elsevier |
series |
Heliyon |
issn |
2405-8440 |
publishDate |
2021-05-01 |
description |
Geochemical fingerprinting is a rapidly expanding discipline in the earth and environmental sciences, anchored in the recognition that geological processes leave behind physical, chemical and sometimes also isotopic patterns in the samples. Furthermore, the geochemical fingerprinting of natural cycles (water, carbon, soil and biota fingerprinting) are influenced by the anthropogenic impact and by the climate change. So, their monitoring is a tool of resilience and adaptation. In recent years, computational statistics and artificial intelligence methods have started to be used to help the process of geochemical fingerprinting. In this paper we consider data from 57 wells located in the province of Ferrara (Italy), all belonging to the same geological group and separated into 4 different aquifers. The aquifer from which each well extracts its water is known only in 18 of the 57 cases, while in other 39 cases it can be only hypothesized based on geological considerations. We devise a novel technique for geochemical fingerprinting of groundwater by means of which we are able to identify the exact aquifer from which a sample is extracted with a sufficiently high accuracy. Then, we experimentally prove that out method is sensibly more accurate than typical statistical approaches, such as principal component analysis, for this particular problem. |
topic |
Geochemical fingerprinting Aquifer fingerprinting Intelligent clustering Feature selection Evolutionary algorithms |
url |
http://www.sciencedirect.com/science/article/pii/S2405844021011208 |
work_keys_str_mv |
AT adiroma anintelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT elucenasanchez anintelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT gsciavicco anintelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT cvaccaro anintelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT adiroma intelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT elucenasanchez intelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT gsciavicco intelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers AT cvaccaro intelligentclusteringmethodfordevisingthegeochemicalfingerprintofundergroundaquifers |
_version_ |
1721399114425434112 |