Preferential Water Infiltration Path in a Slow-Moving Clayey Earthslide Evidenced by Cross-Correlation of Hydrometeorological Time Series (Charlaix Landslide, French Western Alps)

Slow-moving clayey earthslides frequently exhibit seasonal activity suggesting that deformation processes do not only depend on slope and intrinsic geomechanical parameters. On the contrary, seasonal motion patterns are frequently observed with acceleration during the wet season and deceleration dur...

Full description

Bibliographic Details
Main Authors: Grégory Bièvre, Agnès Joseph, Catherine Bertrand
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2018/9593267
Description
Summary:Slow-moving clayey earthslides frequently exhibit seasonal activity suggesting that deformation processes do not only depend on slope and intrinsic geomechanical parameters. On the contrary, seasonal motion patterns are frequently observed with acceleration during the wet season and deceleration during the dry season. Within landslides, it is mainly the phreatic water table which is monitored. However, in the case of deep-seated landslides made of heterogeneous lithological units and with several slip surfaces, the characterization of the phreatic water table does not allow to relate satisfactorily the activity of the landslide with environmental parameters such as rainfall and subsequent water infiltration at depth. This paper presents a seasonal analysis of water infiltration within a slow-moving clayey landslide. Results of an extensive geotechnical and geophysical prospect are first exposed. Then, rainfall and water table level time series are analysed for two water tables using the cross-correlation technique: the phreatic water table located a few metres deep and a water table located above a shear surface located 12 m deep. Results show that water infiltrates faster down to the deepest water table. Then, time series were split between “dry” and “wet” seasons and the effective rainfall was computed from the original rainfall time series. Cross-correlation results show that the phreatic water table responds identically to rainfall in both seasons. On the contrary, the water table located above the shear surface has a very contrasting behaviour between summer (mainly drainage) and winter (behaviour similar to the phreatic water table with storage of water during a few weeks). This difference in behaviour is in agreement with the landslide kinematics.
ISSN:1468-8115
1468-8123