On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators

We consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without sm...

Full description

Bibliographic Details
Main Authors: Y. V. Bogomolov, S. D. GlyzinA, A. Yu. Kolesov
Format: Article
Language:English
Published: Yaroslavl State University 2014-10-01
Series:Modelirovanie i Analiz Informacionnyh Sistem
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/92
id doaj-4e5a2d41cdb34902b9b22be4b50a0594
record_format Article
spelling doaj-4e5a2d41cdb34902b9b22be4b50a05942021-07-29T08:15:19ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172014-10-0121516218010.18255/1818-1015-2014-5-162-18086On the Number of Coexisting Autowaves in the Chain of Coupled OscillatorsY. V. Bogomolov0S. D. GlyzinA1A. Yu. Kolesov2P.G. Demidov Yaroslavl State UniversityP.G. Demidov Yaroslavl State University; Scientific Center in Chernogolovka RASP.G. Demidov Yaroslavl State UniversityWe consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without small parameters but with pulse external action. The statement on correspondence between the resulting system with pulse external action and the original oscillator chain gives a way to demonstrate that under consistent growth of the chain node number and decrease of diffusion coefficient we can obtain in this chain unlimited growth of its coexistent stable periodic orbits (buffer phenomenon). Numerical simulations give the actual dependence of the number of stable orbits on the diffusion parameter value.https://www.mais-journal.ru/jour/article/view/92difference-differential equationsrelaxation cycleautowavesstabilitybufferingbursting
collection DOAJ
language English
format Article
sources DOAJ
author Y. V. Bogomolov
S. D. GlyzinA
A. Yu. Kolesov
spellingShingle Y. V. Bogomolov
S. D. GlyzinA
A. Yu. Kolesov
On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
Modelirovanie i Analiz Informacionnyh Sistem
difference-differential equations
relaxation cycle
autowaves
stability
buffering
bursting
author_facet Y. V. Bogomolov
S. D. GlyzinA
A. Yu. Kolesov
author_sort Y. V. Bogomolov
title On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_short On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_full On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_fullStr On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_full_unstemmed On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_sort on the number of coexisting autowaves in the chain of coupled oscillators
publisher Yaroslavl State University
series Modelirovanie i Analiz Informacionnyh Sistem
issn 1818-1015
2313-5417
publishDate 2014-10-01
description We consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without small parameters but with pulse external action. The statement on correspondence between the resulting system with pulse external action and the original oscillator chain gives a way to demonstrate that under consistent growth of the chain node number and decrease of diffusion coefficient we can obtain in this chain unlimited growth of its coexistent stable periodic orbits (buffer phenomenon). Numerical simulations give the actual dependence of the number of stable orbits on the diffusion parameter value.
topic difference-differential equations
relaxation cycle
autowaves
stability
buffering
bursting
url https://www.mais-journal.ru/jour/article/view/92
work_keys_str_mv AT yvbogomolov onthenumberofcoexistingautowavesinthechainofcoupledoscillators
AT sdglyzina onthenumberofcoexistingautowavesinthechainofcoupledoscillators
AT ayukolesov onthenumberofcoexistingautowavesinthechainofcoupledoscillators
_version_ 1721256562463342592