Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.

BACKGROUND:In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear. ME...

Full description

Bibliographic Details
Main Authors: Oliver Baumann, Mark W Greenlee
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2009-09-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2740827?pdf=render
id doaj-4e4fdd37982049f2b0aa1e15fadb183e
record_format Article
spelling doaj-4e4fdd37982049f2b0aa1e15fadb183e2020-11-25T01:47:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-09-0149e711010.1371/journal.pone.0007110Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.Oliver BaumannMark W GreenleeBACKGROUND:In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear. METHODOLOGY/PRINCIPAL FINDINGS:We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively. CONCLUSIONS:The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.http://europepmc.org/articles/PMC2740827?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Oliver Baumann
Mark W Greenlee
spellingShingle Oliver Baumann
Mark W Greenlee
Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
PLoS ONE
author_facet Oliver Baumann
Mark W Greenlee
author_sort Oliver Baumann
title Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
title_short Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
title_full Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
title_fullStr Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
title_full_unstemmed Effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
title_sort effects of attention to auditory motion on cortical activations during smooth pursuit eye tracking.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2009-09-01
description BACKGROUND:In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear. METHODOLOGY/PRINCIPAL FINDINGS:We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively. CONCLUSIONS:The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.
url http://europepmc.org/articles/PMC2740827?pdf=render
work_keys_str_mv AT oliverbaumann effectsofattentiontoauditorymotiononcorticalactivationsduringsmoothpursuiteyetracking
AT markwgreenlee effectsofattentiontoauditorymotiononcorticalactivationsduringsmoothpursuiteyetracking
_version_ 1725013947473461248