Multiple Model ILC for Continuous-Time Nonlinear Systems
Multiple model iterative learning control (MMILC) method is proposed to deal with the continuous-time nonlinear system with uncertain and iteration-varying parameters. In this kind of control strategy, multiple models are established to cover the uncertainty of system; a switching mechanism is used...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/984742 |
Summary: | Multiple model iterative learning control (MMILC) method is proposed to deal with the continuous-time nonlinear system with uncertain and iteration-varying parameters. In this kind of control strategy, multiple models are established to cover the uncertainty of system; a switching mechanism is used to decide the most appropriate model for system in current iteration. For system operating iteratively in a fixed time interval with uncertain or jumping parameters, this kind of MMILC can improve the transient response and control property greatly. Asymptotical convergence is demonstrated theoretically, and the control effectiveness
is illustrated by numerical simulation. |
---|---|
ISSN: | 1085-3375 1687-0409 |