Study on stationary solutions to the problem of phytoplankton dynamics considering transformation of phosphorus, nitrogen and silicon compounds

Introduction. The solution to the problem of transformation of phosphorus, nitrogen and silicon forms is studied. This problem arises under modeling phytoplankton dynamics in shallow-water bodies including the Azov Sea. The phytoplankton dynamics model is formulated as a boundary value problem for t...

Full description

Bibliographic Details
Main Authors: Yu. V. Belova, A. M. Atayan, A. E. Chistyakov, A. V. Strazhko
Format: Article
Language:Russian
Published: Don State Technical University 2019-04-01
Series:Advanced Engineering Research
Subjects:
Online Access:https://www.vestnik-donstu.ru/jour/article/view/1463
Description
Summary:Introduction. The solution to the problem of transformation of phosphorus, nitrogen and silicon forms is studied. This problem arises under modeling phytoplankton dynamics in shallow-water bodies including the Azov Sea. The phytoplankton dynamics model is formulated as a boundary value problem for the system of diffusion-convection-response equations and takes into account the absorption and release of nutrients by phytoplankton, as well as the transition of nutrients from one compound to another. To calculate the initial conditions and parameters of the equations under which the steady-state regime occurs, the software is developed, which is based on the model describing changes in phytoplankton concentrations without considering current effects. This model is represented by a system of inhomogeneous differential equations. Based on the developed software, the initial conditions and parameters of the phytoplankton dynamics model in the Azov Sea are calculated experimentally.Materials and Methods. A 3D model of phytoplankton dynamics is considered taking into account the transformation of phosphorus, nitrogen and silicon compounds based on the system of nutrient transport equations. The case of a spatially uniform distribution of substances is considered to specify the parameters of the model at which the stationary modes occur. Because of simplification, a system of ordinary differential equations solved through the Runge-Kutta method is obtained.Research Results. The software is developed to specify the initial conditions and parameters of the phytoplankton dynamics model considering the transformation of phosphorus, nitrogen and silicon compounds. Several numerical experiments are performed under the assumption that the development of phytoplankton is limited by a single biogenic substance. As a result of the computational experiment, it can be seen that with the obtained values of the initial concentrations and parameters of the equations, stationary modes occur for the system of ordinary differential equations describing the case of the spatially uniform distribution of substances.Discussion and Conclusions. The mathematical model of the transformation of phosphorus, nitrogen and silicon forms in the problem of phytoplankton dynamics is studied. Stationary  modes for the system of ordinary differential equations are obtained, for which the values of the system parameters and initial conditions are determined. The results obtained can be used in further simulation of the phytoplankton dynamics considering the transformation of phosphorus, nitrogen and silicon compounds with account for convection-diffusion, salinity, and temperature.
ISSN:2687-1653