Fuglede–Putnam type theorems for (p,k) $(p,k)$-quasihyponormal operators via hyponormal operators
Abstract For Hilbert space operators S, X, and T, (S,X,T)∈FP $(S,X,T)\in FP$ means Fuglede–Putnam theorem holds for triplet (S,X,T) $(S,X,T)$, that is, SX=XT $SX=XT$ ensures S∗X=XT∗ $S^{\ast }X=XT^{\ast }$. Similarly, (S,T)∈FP $(S,T)\in FP$ means (S,X,T)∈FP $(S,X,T)\in FP$ holds for each operator X....
Main Authors: | Jiang-Tao Yuan, Cai-Hong Wang |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-05-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-2073-z |
Similar Items
-
Putnam-Fuglede type theorem for class $ \mathcal{A}_k $ operators
by: Ahmed Bachir, et al.
Published: (2021-02-01) -
Asymmetric Putnam-Fuglede Theorem for (n,k)-Quasi-∗-Paranormal Operators
by: Ahmed Bachir, et al.
Published: (2019-01-01) -
A note on <inline-formula><graphic file="1029-242X-2002-268130-i1.gif"/></inline-formula>-hyponormal operators
by: Huruya Tadasi, et al.
Published: (2002-01-01) -
On intertwining and w-hyponormal operators
by: M. O. Otieno
Published: (2005-01-01) -
The Putnam-Fuglede property for paranormal and ∗-paranormal operators
by: Patryk Pagacz
Published: (2013-01-01)