Summary: | Bombyx mori nuclear polyhedrosis virus (BmNPV) is an important pathogen of silkworms. Despite extensive studies in recent decades, the interaction between BmNPV and host cells is still not clearly understood. Autophagy is an intrinsic innate immune mechanism and it controls infection autonomously in virus-infected cells. In this study, we found that BmNPV infection could trigger autophagy, as demonstrated by the formation of autophagosomes, fluorescent Autophagy-related gene 8-Green Fluorescent Protein (ATG8-GFP) punctate, and lipidated ATG8. Meanwhile, autophagic flux increased significantly when monitored by the ATG8-GFP-Red Fluorescent Protein (RFP) autophagy tandem sensor and protein degradation of p62. In addition, almost all of the identified autophagy-related genes (Atgs) had been up-regulated post infection in mRNA levels. Then, we screened Atgs with the greatest fold-change during virus infection. Interestingly, all of the screened Atgs positively regulated the expression of virus genes. Further studies showed that Atg7 and Atg9 could contribute to the level of autophagy caused by viral infection. Our results demonstrated that BmNPV induced host cell autophagy to benefit its infection. These results offer insight into the complex interactions between virus and host cell, and viral pathogenesis.
|