Tuning Functional Behavior of Humic Acids through Interactions with Stöber Silica Nanoparticles

Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemic...

Full description

Bibliographic Details
Main Authors: Giulio Pota, Virginia Venezia, Giuseppe Vitiello, Paola Di Donato, Valentina Mollo, Aniello Costantini, Joshua Avossa, Assunta Nuzzo, Alessandro Piccolo, Brigida Silvestri, Giuseppina Luciani
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/4/982
Description
Summary:Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemical stability and tunable properties. Hybrid organic-inorganic SiO<sub>2</sub>/HA nanostructures were synthesized via an in-situ sol-gel route, exploiting both physical entrapment and chemical coupling. The latter was achieved through amide bond formation between carboxyl groups of HA and the amino group of 3-aminopropyltriethoxysilane (APTS), as confirmed by Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Monodisperse hybrid nanoparticles about 90 nm in diameter were obtained in both cases, yet Electron Paramagnetic Resonance (EPR) spectroscopy highlighted the different supramolecular organization of HA. The altered HA conformation was reflected in different antioxidant properties of the conjugated nanoparticles that, however, resulted in being higher than for pure HA. Our findings proved the key role of both components in defining the morphology of the final system, as well as the efficacy of the ceramic component in templating the HA supramolecular organization and consequently tuning their functional features, thus defining a green strategy for bio-waste valorization.
ISSN:2073-4360