Summary: | Abstract Background Platelet-rich plasma (PRP) is autologous in origin and contains a high concentration of platelets which is a source of various growth factors. Previous studies have suggested that PRP has a positive effect in accelerating fusion by an autologous bone graft in a lumbar fusion. The role of PRP on artificial bone grafts in spinal fusion remains controversial. In this study, positive effect on spinal fusion by PRP was hypothesized; in vitro and in vivo studies were designed to test this hypothesis. Methods PRP was produced from peripheral blood of Sprague-Dawley (SD) rats. A lumbar posterolateral arthrodesis model was used to test the efficacy of PRP on spinal fusion. Thirty SD rats were divided into three groups by different implants: the PRP group, PRP plus collagen-mineral carrier; the platelet-poor plasma (PPP) group, PPP plus collagen-mineral carrier; and the control group, collagen-mineral only. Spinal fusion was examined using plain radiographs, micro-computed tomography (micro-CT), manual palpation, and histological analysis. The fusion rate by micro-CT and that by manual palpation in groups were compared. Results In the micro-CT results, 16 fused segments were observed in the PRP group (80%, 16/20), 2 in the PPP group (10%, 2/20), and 2 in the control group (10%, 2/20). The fusion rate, determined by manual palpation, was 60% (6/10) in the PRP group, 0% (0/10) in the PPP group, and 0% (0/10) in the control group. Histology showed that the PRP group had more new bone and matured marrow formation. Conclusions The results of this study demonstrated that PRP on an artificial bone carrier had positive effects on lumbar spinal fusion in rats. In the future, this composite could be potentially used as a bone graft in humans.
|