Nemytskii operator on generalized bounded variation space

In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f(t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R....

Full description

Bibliographic Details
Main Authors: René Erlín Castillo, Humberto Rafeiro, Eduard Trousselot
Format: Article
Language:Spanish
Published: Universidad Industrial de Santander 2014-06-01
Series:Revista Integración
Subjects:
Online Access:http://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064/4410
id doaj-4d998173c1284934a3ad13a3d9a43d70
record_format Article
spelling doaj-4d998173c1284934a3ad13a3d9a43d702020-11-24T23:18:52ZspaUniversidad Industrial de SantanderRevista Integración0120-419X2145-84722014-06-013217190Nemytskii operator on generalized bounded variation spaceRené Erlín Castillo0Humberto Rafeiro1Eduard Trousselot2Universidad Nacional de ColombiaPontificia Universidad JaverianaUniversidad de OrienteIn this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f(t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R. Resumen. En este artículo demostramos que si el operador de Nemytskii lleva el espacio de variación (φ, α)-acotada en sí mismo, y satisface cierta condición de Lipschitz, entonces existen dos funciones g y h perteneciendo al espacio de variación (φ, α)-acotada tal que f(t, y) = g(t)y + h(t) para todo t ∈ [a, b], y ∈ R.http://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064/4410Riesz p-variationα)-bounded variationp-variación de Riesz
collection DOAJ
language Spanish
format Article
sources DOAJ
author René Erlín Castillo
Humberto Rafeiro
Eduard Trousselot
spellingShingle René Erlín Castillo
Humberto Rafeiro
Eduard Trousselot
Nemytskii operator on generalized bounded variation space
Revista Integración
Riesz p-variation
α)-bounded variation
p-variación de Riesz
author_facet René Erlín Castillo
Humberto Rafeiro
Eduard Trousselot
author_sort René Erlín Castillo
title Nemytskii operator on generalized bounded variation space
title_short Nemytskii operator on generalized bounded variation space
title_full Nemytskii operator on generalized bounded variation space
title_fullStr Nemytskii operator on generalized bounded variation space
title_full_unstemmed Nemytskii operator on generalized bounded variation space
title_sort nemytskii operator on generalized bounded variation space
publisher Universidad Industrial de Santander
series Revista Integración
issn 0120-419X
2145-8472
publishDate 2014-06-01
description In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f(t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R. Resumen. En este artículo demostramos que si el operador de Nemytskii lleva el espacio de variación (φ, α)-acotada en sí mismo, y satisface cierta condición de Lipschitz, entonces existen dos funciones g y h perteneciendo al espacio de variación (φ, α)-acotada tal que f(t, y) = g(t)y + h(t) para todo t ∈ [a, b], y ∈ R.
topic Riesz p-variation
α)-bounded variation
p-variación de Riesz
url http://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064/4410
work_keys_str_mv AT reneerlincastillo nemytskiioperatorongeneralizedboundedvariationspace
AT humbertorafeiro nemytskiioperatorongeneralizedboundedvariationspace
AT eduardtrousselot nemytskiioperatorongeneralizedboundedvariationspace
_version_ 1725579609465946112