TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection.
Bone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-12-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2997048?pdf=render |
id |
doaj-4d6418a787b64cf19ffabc94cbacbeff |
---|---|
record_format |
Article |
spelling |
doaj-4d6418a787b64cf19ffabc94cbacbeff2020-11-25T01:45:07ZengPublic Library of Science (PLoS)PLoS ONE1932-62032010-12-01512e1420610.1371/journal.pone.0014206TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection.Yue WangAaron M AbarbanellJeremy L HerrmannBrent R WeilMariuxi C ManukyanJeffrey A PoynterDaniel R MeldrumBone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis and inhibits proliferation in neuronal progenitors as well as many other cell types. It is unknown whether knock-out (KO) of TLR4 will change the paracrine properties of MSC and in turn improve MSC-associated myocardial protection.This study explored the effect of MSC TLR4 on the secretion of angiogenic factors and chemokines in vitro by using ELISA and cytokine array assays and investigated the role of TLR4 on MSC-mediated myocardial recovery after I/R injury in an isolated rat heart model. We observed that MSC isolated from TLR4 KO mice exhibited a greater degree of cardioprotection in a rat model of myocardial I/R injury. This enhanced protection was associated with increased angiogenic factor production, proliferation and differentiation. TLR4-deficiency was also associated with decreased phosphorylation of PI-3K and AKT, but increased activation of STAT3. siRNA targeting of STAT3 resulted in attenuation of the enhanced cardioprotection of TLR4-deficient MSC.This study indicates that TLR4 exerts deleterious effects on MSC-derived cardioprotection following I/R by a STAT3 inhibitory mechanism.http://europepmc.org/articles/PMC2997048?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yue Wang Aaron M Abarbanell Jeremy L Herrmann Brent R Weil Mariuxi C Manukyan Jeffrey A Poynter Daniel R Meldrum |
spellingShingle |
Yue Wang Aaron M Abarbanell Jeremy L Herrmann Brent R Weil Mariuxi C Manukyan Jeffrey A Poynter Daniel R Meldrum TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS ONE |
author_facet |
Yue Wang Aaron M Abarbanell Jeremy L Herrmann Brent R Weil Mariuxi C Manukyan Jeffrey A Poynter Daniel R Meldrum |
author_sort |
Yue Wang |
title |
TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. |
title_short |
TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. |
title_full |
TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. |
title_fullStr |
TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. |
title_full_unstemmed |
TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. |
title_sort |
tlr4 inhibits mesenchymal stem cell (msc) stat3 activation and thereby exerts deleterious effects on msc-mediated cardioprotection. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2010-12-01 |
description |
Bone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis and inhibits proliferation in neuronal progenitors as well as many other cell types. It is unknown whether knock-out (KO) of TLR4 will change the paracrine properties of MSC and in turn improve MSC-associated myocardial protection.This study explored the effect of MSC TLR4 on the secretion of angiogenic factors and chemokines in vitro by using ELISA and cytokine array assays and investigated the role of TLR4 on MSC-mediated myocardial recovery after I/R injury in an isolated rat heart model. We observed that MSC isolated from TLR4 KO mice exhibited a greater degree of cardioprotection in a rat model of myocardial I/R injury. This enhanced protection was associated with increased angiogenic factor production, proliferation and differentiation. TLR4-deficiency was also associated with decreased phosphorylation of PI-3K and AKT, but increased activation of STAT3. siRNA targeting of STAT3 resulted in attenuation of the enhanced cardioprotection of TLR4-deficient MSC.This study indicates that TLR4 exerts deleterious effects on MSC-derived cardioprotection following I/R by a STAT3 inhibitory mechanism. |
url |
http://europepmc.org/articles/PMC2997048?pdf=render |
work_keys_str_mv |
AT yuewang tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection AT aaronmabarbanell tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection AT jeremylherrmann tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection AT brentrweil tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection AT mariuxicmanukyan tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection AT jeffreyapoynter tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection AT danielrmeldrum tlr4inhibitsmesenchymalstemcellmscstat3activationandtherebyexertsdeleteriouseffectsonmscmediatedcardioprotection |
_version_ |
1725025062073925632 |