Global offensive k-alliance in bipartite graphs
Let \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2012-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol32/1/art/opuscula_math_3207.pdf |
id |
doaj-4d5d8c80b0b644b598654a3218d85c8b |
---|---|
record_format |
Article |
spelling |
doaj-4d5d8c80b0b644b598654a3218d85c8b2020-11-25T00:41:20ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742012-01-013218389http://dx.doi.org/10.7494/OpMath.2012.32.1.833207Global offensive k-alliance in bipartite graphsMustapha Chellali0Lutz Volkmann1University of Blida, LAMDA-RO Laboratory, Department of Mathematics, B.P. 270, Blida, AlgeriaRWTH Aachen University, Lehrstuhl II für Mathematik, Templergraben 55, D-52056 Aachen, GermanyLet \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(k\)-alliance number \(\gamma^k_o(G)\) is the minimum cardinality of a global offensive \(k\)-alliance in \(G\). We show that for every bipartite graph \(G\) and every integer \(k \geq 2\), \(\gamma^k_o(G) \leq \frac{n(G)+|L_k(G)|}{2}\), where \(L_k(G)\) is the set of vertices of degree at most \(k-1\). Moreover, extremal trees attaining this upper bound are characterized.http://www.opuscula.agh.edu.pl/vol32/1/art/opuscula_math_3207.pdfglobal offensive \(k\)-alliance numberbipartite graphstrees |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mustapha Chellali Lutz Volkmann |
spellingShingle |
Mustapha Chellali Lutz Volkmann Global offensive k-alliance in bipartite graphs Opuscula Mathematica global offensive \(k\)-alliance number bipartite graphs trees |
author_facet |
Mustapha Chellali Lutz Volkmann |
author_sort |
Mustapha Chellali |
title |
Global offensive k-alliance in bipartite graphs |
title_short |
Global offensive k-alliance in bipartite graphs |
title_full |
Global offensive k-alliance in bipartite graphs |
title_fullStr |
Global offensive k-alliance in bipartite graphs |
title_full_unstemmed |
Global offensive k-alliance in bipartite graphs |
title_sort |
global offensive k-alliance in bipartite graphs |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2012-01-01 |
description |
Let \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(k\)-alliance number \(\gamma^k_o(G)\) is the minimum cardinality of a global offensive \(k\)-alliance in \(G\). We show that for every bipartite graph \(G\) and every integer \(k \geq 2\), \(\gamma^k_o(G) \leq \frac{n(G)+|L_k(G)|}{2}\), where \(L_k(G)\) is the set of vertices of degree at most \(k-1\). Moreover, extremal trees attaining this upper bound are characterized. |
topic |
global offensive \(k\)-alliance number bipartite graphs trees |
url |
http://www.opuscula.agh.edu.pl/vol32/1/art/opuscula_math_3207.pdf |
work_keys_str_mv |
AT mustaphachellali globaloffensivekallianceinbipartitegraphs AT lutzvolkmann globaloffensivekallianceinbipartitegraphs |
_version_ |
1725285899001921536 |