Global offensive k-alliance in bipartite graphs

Let \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(...

Full description

Bibliographic Details
Main Authors: Mustapha Chellali, Lutz Volkmann
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2012-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol32/1/art/opuscula_math_3207.pdf
id doaj-4d5d8c80b0b644b598654a3218d85c8b
record_format Article
spelling doaj-4d5d8c80b0b644b598654a3218d85c8b2020-11-25T00:41:20ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742012-01-013218389http://dx.doi.org/10.7494/OpMath.2012.32.1.833207Global offensive k-alliance in bipartite graphsMustapha Chellali0Lutz Volkmann1University of Blida, LAMDA-RO Laboratory, Department of Mathematics, B.P. 270, Blida, AlgeriaRWTH Aachen University, Lehrstuhl II für Mathematik, Templergraben 55, D-52056 Aachen, GermanyLet \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(k\)-alliance number \(\gamma^k_o(G)\) is the minimum cardinality of a global offensive \(k\)-alliance in \(G\). We show that for every bipartite graph \(G\) and every integer \(k \geq 2\), \(\gamma^k_o(G) \leq \frac{n(G)+|L_k(G)|}{2}\), where \(L_k(G)\) is the set of vertices of degree at most \(k-1\). Moreover, extremal trees attaining this upper bound are characterized.http://www.opuscula.agh.edu.pl/vol32/1/art/opuscula_math_3207.pdfglobal offensive \(k\)-alliance numberbipartite graphstrees
collection DOAJ
language English
format Article
sources DOAJ
author Mustapha Chellali
Lutz Volkmann
spellingShingle Mustapha Chellali
Lutz Volkmann
Global offensive k-alliance in bipartite graphs
Opuscula Mathematica
global offensive \(k\)-alliance number
bipartite graphs
trees
author_facet Mustapha Chellali
Lutz Volkmann
author_sort Mustapha Chellali
title Global offensive k-alliance in bipartite graphs
title_short Global offensive k-alliance in bipartite graphs
title_full Global offensive k-alliance in bipartite graphs
title_fullStr Global offensive k-alliance in bipartite graphs
title_full_unstemmed Global offensive k-alliance in bipartite graphs
title_sort global offensive k-alliance in bipartite graphs
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2012-01-01
description Let \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(k\)-alliance number \(\gamma^k_o(G)\) is the minimum cardinality of a global offensive \(k\)-alliance in \(G\). We show that for every bipartite graph \(G\) and every integer \(k \geq 2\), \(\gamma^k_o(G) \leq \frac{n(G)+|L_k(G)|}{2}\), where \(L_k(G)\) is the set of vertices of degree at most \(k-1\). Moreover, extremal trees attaining this upper bound are characterized.
topic global offensive \(k\)-alliance number
bipartite graphs
trees
url http://www.opuscula.agh.edu.pl/vol32/1/art/opuscula_math_3207.pdf
work_keys_str_mv AT mustaphachellali globaloffensivekallianceinbipartitegraphs
AT lutzvolkmann globaloffensivekallianceinbipartitegraphs
_version_ 1725285899001921536