An Extension of Gregus Fixed Point Theorem
<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inl...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2007/078628 |
id |
doaj-4d5c5b1a120343d6b6413290da880e9b |
---|---|
record_format |
Article |
spelling |
doaj-4d5c5b1a120343d6b6413290da880e9b2020-11-24T23:57:50ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071078628An Extension of Gregus Fixed Point TheoremOlaleru JOAkewe H<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2007-078628-i3.gif"/></inline-formula> a mapping that satisfies <inline-formula><graphic file="1687-1812-2007-078628-i4.gif"/></inline-formula> for all <inline-formula><graphic file="1687-1812-2007-078628-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-078628-i6.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i8.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-078628-i11.gif"/></inline-formula>. Then <inline-formula><graphic file="1687-1812-2007-078628-i12.gif"/></inline-formula> has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of <inline-formula><graphic file="1687-1812-2007-078628-i13.gif"/></inline-formula>.</p> http://www.fixedpointtheoryandapplications.com/content/2007/078628 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Olaleru JO Akewe H |
spellingShingle |
Olaleru JO Akewe H An Extension of Gregus Fixed Point Theorem Fixed Point Theory and Applications |
author_facet |
Olaleru JO Akewe H |
author_sort |
Olaleru JO |
title |
An Extension of Gregus Fixed Point Theorem |
title_short |
An Extension of Gregus Fixed Point Theorem |
title_full |
An Extension of Gregus Fixed Point Theorem |
title_fullStr |
An Extension of Gregus Fixed Point Theorem |
title_full_unstemmed |
An Extension of Gregus Fixed Point Theorem |
title_sort |
extension of gregus fixed point theorem |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2007-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2007-078628-i3.gif"/></inline-formula> a mapping that satisfies <inline-formula><graphic file="1687-1812-2007-078628-i4.gif"/></inline-formula> for all <inline-formula><graphic file="1687-1812-2007-078628-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-078628-i6.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i8.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-078628-i11.gif"/></inline-formula>. Then <inline-formula><graphic file="1687-1812-2007-078628-i12.gif"/></inline-formula> has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of <inline-formula><graphic file="1687-1812-2007-078628-i13.gif"/></inline-formula>.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2007/078628 |
work_keys_str_mv |
AT olalerujo anextensionofgregusfixedpointtheorem AT akeweh anextensionofgregusfixedpointtheorem AT olalerujo extensionofgregusfixedpointtheorem AT akeweh extensionofgregusfixedpointtheorem |
_version_ |
1716245778106679296 |