An Extension of Gregus Fixed Point Theorem

<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inl...

Full description

Bibliographic Details
Main Authors: Olaleru JO, Akewe H
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2007/078628
id doaj-4d5c5b1a120343d6b6413290da880e9b
record_format Article
spelling doaj-4d5c5b1a120343d6b6413290da880e9b2020-11-24T23:57:50ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071078628An Extension of Gregus Fixed Point TheoremOlaleru JOAkewe H<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2007-078628-i3.gif"/></inline-formula> a mapping that satisfies <inline-formula><graphic file="1687-1812-2007-078628-i4.gif"/></inline-formula> for all <inline-formula><graphic file="1687-1812-2007-078628-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-078628-i6.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i8.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-078628-i11.gif"/></inline-formula>. Then <inline-formula><graphic file="1687-1812-2007-078628-i12.gif"/></inline-formula> has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of <inline-formula><graphic file="1687-1812-2007-078628-i13.gif"/></inline-formula>.</p> http://www.fixedpointtheoryandapplications.com/content/2007/078628
collection DOAJ
language English
format Article
sources DOAJ
author Olaleru JO
Akewe H
spellingShingle Olaleru JO
Akewe H
An Extension of Gregus Fixed Point Theorem
Fixed Point Theory and Applications
author_facet Olaleru JO
Akewe H
author_sort Olaleru JO
title An Extension of Gregus Fixed Point Theorem
title_short An Extension of Gregus Fixed Point Theorem
title_full An Extension of Gregus Fixed Point Theorem
title_fullStr An Extension of Gregus Fixed Point Theorem
title_full_unstemmed An Extension of Gregus Fixed Point Theorem
title_sort extension of gregus fixed point theorem
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2007-01-01
description <p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2007-078628-i3.gif"/></inline-formula> a mapping that satisfies <inline-formula><graphic file="1687-1812-2007-078628-i4.gif"/></inline-formula> for all <inline-formula><graphic file="1687-1812-2007-078628-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-078628-i6.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i8.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-078628-i11.gif"/></inline-formula>. Then <inline-formula><graphic file="1687-1812-2007-078628-i12.gif"/></inline-formula> has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of <inline-formula><graphic file="1687-1812-2007-078628-i13.gif"/></inline-formula>.</p>
url http://www.fixedpointtheoryandapplications.com/content/2007/078628
work_keys_str_mv AT olalerujo anextensionofgregusfixedpointtheorem
AT akeweh anextensionofgregusfixedpointtheorem
AT olalerujo extensionofgregusfixedpointtheorem
AT akeweh extensionofgregusfixedpointtheorem
_version_ 1716245778106679296