Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments

By employing the continuation theorem of coincidence degree theory developed by Mawhin, we obtain periodic solution for a class of neutral differential equation with variable parameter and multiple deviating arguments.

Bibliographic Details
Main Authors: Bo Du, Xiaojing Wang
Format: Article
Language:English
Published: Texas State University 2010-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/100/abstr.html
id doaj-4d59916b4ea04c18b166bbaf4e36af0f
record_format Article
spelling doaj-4d59916b4ea04c18b166bbaf4e36af0f2020-11-24T23:17:44ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912010-07-012010100,19Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating argumentsBo DuXiaojing WangBy employing the continuation theorem of coincidence degree theory developed by Mawhin, we obtain periodic solution for a class of neutral differential equation with variable parameter and multiple deviating arguments. http://ejde.math.txstate.edu/Volumes/2010/100/abstr.htmlMawhin's continuation theoremperiodic solutionneutralvariable parameter
collection DOAJ
language English
format Article
sources DOAJ
author Bo Du
Xiaojing Wang
spellingShingle Bo Du
Xiaojing Wang
Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
Electronic Journal of Differential Equations
Mawhin's continuation theorem
periodic solution
neutral
variable parameter
author_facet Bo Du
Xiaojing Wang
author_sort Bo Du
title Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
title_short Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
title_full Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
title_fullStr Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
title_full_unstemmed Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
title_sort periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2010-07-01
description By employing the continuation theorem of coincidence degree theory developed by Mawhin, we obtain periodic solution for a class of neutral differential equation with variable parameter and multiple deviating arguments.
topic Mawhin's continuation theorem
periodic solution
neutral
variable parameter
url http://ejde.math.txstate.edu/Volumes/2010/100/abstr.html
work_keys_str_mv AT bodu periodicsolutionsforasecondorderneutraldifferentialequationwithvariableparameterandmultipledeviatingarguments
AT xiaojingwang periodicsolutionsforasecondorderneutraldifferentialequationwithvariableparameterandmultipledeviatingarguments
_version_ 1725583669037367296