Overview of traffic safety aspects and design in road tunnels

This paper reviews aspects of traffic safety and behavior of drivers in road tunnels based on several case studies of traffic accidents along the traffic zones of tunnel alignment (entrance: zone 2; transition zone: zone 3; and inner zone: zone 4). This paper commences with engineering and design as...

Full description

Bibliographic Details
Main Author: Shy Bassan
Format: Article
Language:English
Published: Elsevier 2016-07-01
Series:IATSS Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0386111216000066
id doaj-4d4d468f0b7a4859be208ad5533bdd56
record_format Article
spelling doaj-4d4d468f0b7a4859be208ad5533bdd562020-11-24T21:23:37ZengElsevierIATSS Research0386-11122016-07-01401354610.1016/j.iatssr.2016.02.002Overview of traffic safety aspects and design in road tunnelsShy BassanThis paper reviews aspects of traffic safety and behavior of drivers in road tunnels based on several case studies of traffic accidents along the traffic zones of tunnel alignment (entrance: zone 2; transition zone: zone 3; and inner zone: zone 4). This paper commences with engineering and design aspects that differentiate between road tunnel and open highways and, afterward, reviews certain issues related to tunnel safety and crashes such as driver behavior, highway alignment, tunnel length, and longitudinal friction. This paper additionally discusses the severity of crashes in road tunnels, specifically severe crashes in road tunnels, including fire incidents and their relationship with vehicle crashes. Finally, additional risk measures and classifications of tunnel safety are introduced. The risk of a crash in a tunnel is reduced compared with crashes on the open road (approximately half); however, tunnel crash severity is higher. The catastrophe potential related to a tunnel fire is higher than in a vehicle crash, even though fire crashes are less frequent than traffic crashes. Drivers in road tunnels generally reduce their speed and increase their lateral position from the right tunnel wall while driving. In shorter tunnels, with reduced driving speed, driver vigilance may be more robust without being hindered by dull driving, which is more common in longer tunnels. Still, in spite of driver alertness, crash rates in tunnels occur due to the tunnel's unusual driving environment. Crash rates are lower in the tunnel inner zone due to driver alertness, especially after passing the transition zone and acclimating to the tunnel environment. The number of crashes, however, is higher along zone 4 (tunnel inner zone, which is the principal zone), as it covers longer driving distance. According to most studies, short tunnels were found to exhibit higher crash rates than long tunnels because the entrance zones incorporate higher crash rates, compared with the midzones; nonetheless, longer unidirectional (freeway and multilane) tunnels with higher design speed, entail lower driver alertness and diminished concentration due to relatively monotonous driving in spite of a tunnel's closed environment.http://www.sciencedirect.com/science/article/pii/S0386111216000066Road tunnelTunnel safetyTunnel zonesTunnel lengthCrashRisk
collection DOAJ
language English
format Article
sources DOAJ
author Shy Bassan
spellingShingle Shy Bassan
Overview of traffic safety aspects and design in road tunnels
IATSS Research
Road tunnel
Tunnel safety
Tunnel zones
Tunnel length
Crash
Risk
author_facet Shy Bassan
author_sort Shy Bassan
title Overview of traffic safety aspects and design in road tunnels
title_short Overview of traffic safety aspects and design in road tunnels
title_full Overview of traffic safety aspects and design in road tunnels
title_fullStr Overview of traffic safety aspects and design in road tunnels
title_full_unstemmed Overview of traffic safety aspects and design in road tunnels
title_sort overview of traffic safety aspects and design in road tunnels
publisher Elsevier
series IATSS Research
issn 0386-1112
publishDate 2016-07-01
description This paper reviews aspects of traffic safety and behavior of drivers in road tunnels based on several case studies of traffic accidents along the traffic zones of tunnel alignment (entrance: zone 2; transition zone: zone 3; and inner zone: zone 4). This paper commences with engineering and design aspects that differentiate between road tunnel and open highways and, afterward, reviews certain issues related to tunnel safety and crashes such as driver behavior, highway alignment, tunnel length, and longitudinal friction. This paper additionally discusses the severity of crashes in road tunnels, specifically severe crashes in road tunnels, including fire incidents and their relationship with vehicle crashes. Finally, additional risk measures and classifications of tunnel safety are introduced. The risk of a crash in a tunnel is reduced compared with crashes on the open road (approximately half); however, tunnel crash severity is higher. The catastrophe potential related to a tunnel fire is higher than in a vehicle crash, even though fire crashes are less frequent than traffic crashes. Drivers in road tunnels generally reduce their speed and increase their lateral position from the right tunnel wall while driving. In shorter tunnels, with reduced driving speed, driver vigilance may be more robust without being hindered by dull driving, which is more common in longer tunnels. Still, in spite of driver alertness, crash rates in tunnels occur due to the tunnel's unusual driving environment. Crash rates are lower in the tunnel inner zone due to driver alertness, especially after passing the transition zone and acclimating to the tunnel environment. The number of crashes, however, is higher along zone 4 (tunnel inner zone, which is the principal zone), as it covers longer driving distance. According to most studies, short tunnels were found to exhibit higher crash rates than long tunnels because the entrance zones incorporate higher crash rates, compared with the midzones; nonetheless, longer unidirectional (freeway and multilane) tunnels with higher design speed, entail lower driver alertness and diminished concentration due to relatively monotonous driving in spite of a tunnel's closed environment.
topic Road tunnel
Tunnel safety
Tunnel zones
Tunnel length
Crash
Risk
url http://www.sciencedirect.com/science/article/pii/S0386111216000066
work_keys_str_mv AT shybassan overviewoftrafficsafetyaspectsanddesigninroadtunnels
_version_ 1725991879978254336