Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
Abstract Background Many computational methods have been developed recently to analyze single-cell RNA-seq (scRNA-seq) data. Several benchmark studies have compared these methods on their ability for dimensionality reduction, clustering, or differential analysis, often relying on default parameters....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-08-01
|
Series: | Genome Biology |
Online Access: | http://link.springer.com/article/10.1186/s13059-020-02128-7 |
id |
doaj-4d43fbaf751b4d93a2430efb3f64bba1 |
---|---|
record_format |
Article |
spelling |
doaj-4d43fbaf751b4d93a2430efb3f64bba12020-11-25T03:49:27ZengBMCGenome Biology1474-760X2020-08-0121111710.1186/s13059-020-02128-7Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysisFelix Raimundo0Celine Vallot1Jean-Philippe Vert2Google Research, Brain teamCNRS UMR3244, Institut Curie, PSL Research UniversityGoogle Research, Brain teamAbstract Background Many computational methods have been developed recently to analyze single-cell RNA-seq (scRNA-seq) data. Several benchmark studies have compared these methods on their ability for dimensionality reduction, clustering, or differential analysis, often relying on default parameters. Yet, given the biological diversity of scRNA-seq datasets, parameter tuning might be essential for the optimal usage of methods, and determining how to tune parameters remains an unmet need. Results Here, we propose a benchmark to assess the performance of five methods, systematically varying their tunable parameters, for dimension reduction of scRNA-seq data, a common first step to many downstream applications such as cell type identification or trajectory inference. We run a total of 1.5 million experiments to assess the influence of parameter changes on the performance of each method, and propose two strategies to automatically tune parameters for methods that need it. Conclusions We find that principal component analysis (PCA)-based methods like scran and Seurat are competitive with default parameters but do not benefit much from parameter tuning, while more complex models like ZinbWave, DCA, and scVI can reach better performance but after parameter tuning.http://link.springer.com/article/10.1186/s13059-020-02128-7 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Felix Raimundo Celine Vallot Jean-Philippe Vert |
spellingShingle |
Felix Raimundo Celine Vallot Jean-Philippe Vert Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis Genome Biology |
author_facet |
Felix Raimundo Celine Vallot Jean-Philippe Vert |
author_sort |
Felix Raimundo |
title |
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis |
title_short |
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis |
title_full |
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis |
title_fullStr |
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis |
title_full_unstemmed |
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis |
title_sort |
tuning parameters of dimensionality reduction methods for single-cell rna-seq analysis |
publisher |
BMC |
series |
Genome Biology |
issn |
1474-760X |
publishDate |
2020-08-01 |
description |
Abstract Background Many computational methods have been developed recently to analyze single-cell RNA-seq (scRNA-seq) data. Several benchmark studies have compared these methods on their ability for dimensionality reduction, clustering, or differential analysis, often relying on default parameters. Yet, given the biological diversity of scRNA-seq datasets, parameter tuning might be essential for the optimal usage of methods, and determining how to tune parameters remains an unmet need. Results Here, we propose a benchmark to assess the performance of five methods, systematically varying their tunable parameters, for dimension reduction of scRNA-seq data, a common first step to many downstream applications such as cell type identification or trajectory inference. We run a total of 1.5 million experiments to assess the influence of parameter changes on the performance of each method, and propose two strategies to automatically tune parameters for methods that need it. Conclusions We find that principal component analysis (PCA)-based methods like scran and Seurat are competitive with default parameters but do not benefit much from parameter tuning, while more complex models like ZinbWave, DCA, and scVI can reach better performance but after parameter tuning. |
url |
http://link.springer.com/article/10.1186/s13059-020-02128-7 |
work_keys_str_mv |
AT felixraimundo tuningparametersofdimensionalityreductionmethodsforsinglecellrnaseqanalysis AT celinevallot tuningparametersofdimensionalityreductionmethodsforsinglecellrnaseqanalysis AT jeanphilippevert tuningparametersofdimensionalityreductionmethodsforsinglecellrnaseqanalysis |
_version_ |
1724495432978006016 |