Investigation and identification of protein γ-glutamyl carboxylation sites
<p>Abstract</p> <p>Background</p> <p>Carboxylation is a modification of glutamate (Glu) residues which occurs post-translation that is catalyzed by γ-glutamyl carboxylase in the lumen of the endoplasmic reticulum. Vitamin K is a critical co-factor in the post-translatio...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-11-01
|
Series: | BMC Bioinformatics |
id |
doaj-4d42060173704877aba582d484f56b06 |
---|---|
record_format |
Article |
spelling |
doaj-4d42060173704877aba582d484f56b062020-11-24T21:06:45ZengBMCBMC Bioinformatics1471-21052011-11-0112Suppl 13S1010.1186/1471-2105-12-S13-S10Investigation and identification of protein γ-glutamyl carboxylation sitesLee Tzong-YiLu Cheng-TsungChen Shu-AnBretaña NeilCheng Tzu-HsiuSu Min-GangHuang Kai-Yao<p>Abstract</p> <p>Background</p> <p>Carboxylation is a modification of glutamate (Glu) residues which occurs post-translation that is catalyzed by γ-glutamyl carboxylase in the lumen of the endoplasmic reticulum. Vitamin K is a critical co-factor in the post-translational conversion of Glu residues to γ-carboxyglutamate (Gla) residues. It has been shown that the process of carboxylation is involved in the blood clotting cascade, bone growth, and extraosseous calcification. However, studies in this field have been limited by the difficulty of experimentally studying substrate site specificity in γ-glutamyl carboxylation. <it>In silico</it> investigations have the potential for characterizing carboxylated sites before experiments are carried out.</p> <p>Results</p> <p>Because of the importance of γ-glutamyl carboxylation in biological mechanisms, this study investigates the substrate site specificity in carboxylation sites. It considers not only the composition of amino acids that surround carboxylation sites, but also the structural characteristics of these sites, including secondary structure and solvent-accessible surface area (ASA). The explored features are used to establish a predictive model for differentiating between carboxylation sites and non-carboxylation sites. A support vector machine (SVM) is employed to establish a predictive model with various features. A five-fold cross-validation evaluation reveals that the SVM model, trained with the combined features of positional weighted matrix (PWM), amino acid composition (AAC), and ASA, yields the highest accuracy (0.892). Furthermore, an independent testing set is constructed to evaluate whether the predictive model is over-fitted to the training set.</p> <p>Conclusions</p> <p>Independent testing data that did not undergo the cross-validation process shows that the proposed model can differentiate between carboxylation sites and non-carboxylation sites. This investigation is the first to study carboxylation sites and to develop a system for identifying them. The proposed method is a practical means of preliminary analysis and greatly diminishes the total number of potential carboxylation sites requiring further experimental confirmation.</p> |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lee Tzong-Yi Lu Cheng-Tsung Chen Shu-An Bretaña Neil Cheng Tzu-Hsiu Su Min-Gang Huang Kai-Yao |
spellingShingle |
Lee Tzong-Yi Lu Cheng-Tsung Chen Shu-An Bretaña Neil Cheng Tzu-Hsiu Su Min-Gang Huang Kai-Yao Investigation and identification of protein γ-glutamyl carboxylation sites BMC Bioinformatics |
author_facet |
Lee Tzong-Yi Lu Cheng-Tsung Chen Shu-An Bretaña Neil Cheng Tzu-Hsiu Su Min-Gang Huang Kai-Yao |
author_sort |
Lee Tzong-Yi |
title |
Investigation and identification of protein γ-glutamyl carboxylation sites |
title_short |
Investigation and identification of protein γ-glutamyl carboxylation sites |
title_full |
Investigation and identification of protein γ-glutamyl carboxylation sites |
title_fullStr |
Investigation and identification of protein γ-glutamyl carboxylation sites |
title_full_unstemmed |
Investigation and identification of protein γ-glutamyl carboxylation sites |
title_sort |
investigation and identification of protein γ-glutamyl carboxylation sites |
publisher |
BMC |
series |
BMC Bioinformatics |
issn |
1471-2105 |
publishDate |
2011-11-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Carboxylation is a modification of glutamate (Glu) residues which occurs post-translation that is catalyzed by γ-glutamyl carboxylase in the lumen of the endoplasmic reticulum. Vitamin K is a critical co-factor in the post-translational conversion of Glu residues to γ-carboxyglutamate (Gla) residues. It has been shown that the process of carboxylation is involved in the blood clotting cascade, bone growth, and extraosseous calcification. However, studies in this field have been limited by the difficulty of experimentally studying substrate site specificity in γ-glutamyl carboxylation. <it>In silico</it> investigations have the potential for characterizing carboxylated sites before experiments are carried out.</p> <p>Results</p> <p>Because of the importance of γ-glutamyl carboxylation in biological mechanisms, this study investigates the substrate site specificity in carboxylation sites. It considers not only the composition of amino acids that surround carboxylation sites, but also the structural characteristics of these sites, including secondary structure and solvent-accessible surface area (ASA). The explored features are used to establish a predictive model for differentiating between carboxylation sites and non-carboxylation sites. A support vector machine (SVM) is employed to establish a predictive model with various features. A five-fold cross-validation evaluation reveals that the SVM model, trained with the combined features of positional weighted matrix (PWM), amino acid composition (AAC), and ASA, yields the highest accuracy (0.892). Furthermore, an independent testing set is constructed to evaluate whether the predictive model is over-fitted to the training set.</p> <p>Conclusions</p> <p>Independent testing data that did not undergo the cross-validation process shows that the proposed model can differentiate between carboxylation sites and non-carboxylation sites. This investigation is the first to study carboxylation sites and to develop a system for identifying them. The proposed method is a practical means of preliminary analysis and greatly diminishes the total number of potential carboxylation sites requiring further experimental confirmation.</p> |
work_keys_str_mv |
AT leetzongyi investigationandidentificationofproteingglutamylcarboxylationsites AT luchengtsung investigationandidentificationofproteingglutamylcarboxylationsites AT chenshuan investigationandidentificationofproteingglutamylcarboxylationsites AT bretananeil investigationandidentificationofproteingglutamylcarboxylationsites AT chengtzuhsiu investigationandidentificationofproteingglutamylcarboxylationsites AT sumingang investigationandidentificationofproteingglutamylcarboxylationsites AT huangkaiyao investigationandidentificationofproteingglutamylcarboxylationsites |
_version_ |
1716764812072976384 |