A discrete element model of brittle damages generated by thermal expansion mismatch of heterogeneous media
At the macroscopic scale, such media as rocks or ceramics can be seen as homogeneous continuum. However, at the microscopic scale these materials involve sophisticated micro-structures that mix several phases. Generally, these micro-structures are composed by a large amount of inclusions embedded in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2017-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://doi.org/10.1051/epjconf/201714015001 |
Summary: | At the macroscopic scale, such media as rocks or ceramics can be seen as homogeneous continuum. However, at the microscopic scale these materials involve sophisticated micro-structures that mix several phases. Generally, these micro-structures are composed by a large amount of inclusions embedded in a brittle matrix that ensures the cohesion of the structure. These materials generally exhibit complex non linear mechanical behaviors that result from the interactions between the different phases. This paper proposes to study the impact of the diffuse damages that result from the thermal expansion mismatch between the phases in presence. The Discrete Element Method (DEM) that naturally take into account discontinuities is proposed to study these phenomena. |
---|---|
ISSN: | 2100-014X |