Corporate Social Responsibility Practices in the U.S.: Using Reverse Supply Chain Network Design and Optimization Considering Carbon Cost

A research model using the market price for greenhouse gas (GHG) emissions illustrates how the policies, and economic and environment implications of the carbon price can be formulated using a deterministic equilibrium model. However, with increasing carbon costs, the optimal reverse supply chain (R...

Full description

Bibliographic Details
Main Author: Bandar Alkhayyal
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/11/7/2097
Description
Summary:A research model using the market price for greenhouse gas (GHG) emissions illustrates how the policies, and economic and environment implications of the carbon price can be formulated using a deterministic equilibrium model. However, with increasing carbon costs, the optimal reverse supply chain (RSC) system is being required to adapt and has undergone many distinct shifts in character as it seeks out new configurations through which costs may be effectively managed and minimized. The model was studied comprehensively in terms of quantitative performance using orthogonal arrays. The results were compared to top-down estimates produced through economic input-output life cycle assessment (EIO-LCA) models, providing a basis to contrast remanufacturing GHG emission quantities with those realized through original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increased modeled remanufacturing costs by 2.7%, but also increased original equipment costs by 2.3%. The research presented in this study puts forward the theoretical modeling of optimal RSC systems and provides an empirical case study concerning remanufactured appliances, an area of current industrial literature in which there is a dearth of study.
ISSN:2071-1050