Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

The current case study presents results of the ground-penetrating radar (GPR) profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The...

Full description

Bibliographic Details
Main Authors: Jüri Plado, Ivo Sibul, Mario Mustasaar, Argo Jõeleht
Format: Article
Language:English
Published: Estonian Academy Publishers 2011-03-01
Series:Estonian Journal of Earth Sciences
Subjects:
bog
Online Access:http://www.kirj.ee/public/Estonian_Journal_of_Earth_Sciences/2011/issue_1/earth-2011-1-31-42.pdf
Description
Summary:The current case study presents results of the ground-penetrating radar (GPR) profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3) were found to exceed the earlier estimation (979 000 m3) that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.
ISSN:1736-4728