A Density Peak Clustering Algorithm Based on the K-Nearest Shannon Entropy and Tissue-Like P System
This study proposes a novel method to calculate the density of the data points based on K-nearest neighbors and Shannon entropy. A variant of tissue-like P systems with active membranes is introduced to realize the clustering process. The new variant of tissue-like P systems can improve the efficien...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/1713801 |
Summary: | This study proposes a novel method to calculate the density of the data points based on K-nearest neighbors and Shannon entropy. A variant of tissue-like P systems with active membranes is introduced to realize the clustering process. The new variant of tissue-like P systems can improve the efficiency of the algorithm and reduce the computation complexity. Finally, experimental results on synthetic and real-world datasets show that the new method is more effective than the other state-of-the-art clustering methods. |
---|---|
ISSN: | 1024-123X 1563-5147 |